

Ratification Number 2014 - 157

AN ORDINANCE

TO AMEND THE ZONING ORDINANCE OF THE CITY OF CHARLESTON BY CHANGING THE ZONE MAP, WHICH IS A PART THEREOF, SO THAT 546 RIVERBEND TRAIL AT SC HIGHWAY 41 (CAINHOY) (70.37 ACRES) (TMS #263-00-04-001) (COUNCIL DISTRICT 1), BE ZONED PLANNED UNIT DEVELOPMENT (PUD) CLASSIFICATION. (AS AMENDED)

BE IT ORDAINED BY THE MAYOR AND COUNCILMEMBERS OF CHARLESTON, IN CITY COUNCIL ASSEMBLED:

<u>Section 1.</u> That the <u>Zoning Ordinance</u> of the City of Charleston be, and the same hereby is amended, by changing the zone map thereof so that the below described property shall become a part thereof:

546 Riverbend Trail at SC Highway 41 (Cainhoy) (70.37 acres) (TMS #263-00-04-001)

Section 2. That the said parcel of land described above shall be zoned Planned Unit Development (PUD) classification.

Section 3. This ordinance shall become effective upon ratification.

Ratified in City Council this day of in the Year of Our Lord, 2014, in the 239th Year of Independence of the United States of America.

By:

Joseph P. Rifey, Jr. Mayor, City of Charleston

Attest:

Vanessa Turner-Maybank

Clerk of Council

City of Charleston

Planning Commission November 19, 2014

Zoning 3

546 Riverbend Trail & Hwy 41 (Cainhoy)

TMS# 2630004001

70.37 ac.

Request zoning of Planned Unit Development (PUD). Zoned Manufactured Residential (R-2) in Berkeley County.

Owner: Past Time Amusement Company

Location

Department of Planning, Preservation & Sustainability
www.charleston-sc.gov 75 Calhoun St, Charleston, SC 29401

843.724.3787

City Council Approved

Date: 2-16-2014

Ordinance #: 2014-157

WANDO VILLAGE

Developed By:
The Beach Company
211 King Street #300
Charleston, South Carolina
29401

Owners:

Pastime Amusement, Inc. (Majority)
Mary Ellen Properties, LLC and Joyce Carolyn properties, LLC (Minority)

Project ID #: 140804-SC41-1 Revised: 11/19/14 Revised: 12/2/14

682 JOHNNIE DODDS BLVD • SUITE 100 MT. PLEASANT, SC 29464 • 843.849.0200 WWW.THOMASANDHUTTON.COM

Amended 4/11/2018 - see page 93

TABLE OF CONTENTS

- 1.) Property Overview and Development Intent
 - a) Planning Commission Approval and Conditions
- 2.) Master Plan
 - a) Plat
 - b) Site Analysis
 - c) Aerial Overlay
 - d) Land Use Plan
- 3.) Permitted Uses by Development Pod
- 4.) PUD Zoning Regulations by Development Pod
 - a) Estate Lots
 - b) Mixed-Use
 - c) Parking Requirements
- 5.) Open Space and Recreational Areas
- 6.) Landscape and Buffer Requirements
- 7.) Traffic Impact Study
- 8.) Drainage Basin Analysis
- 9.) Density
- 10.) Rights-of-Way
- 11.) Property Owners Association and Design Review
- 12.) Signage
- 13.) Anticipated Phasing

EXHIBITS

- 1. Existing Zoning of Subject & Adjacent Parcels
- 2. Land Use Upper Cainhoy from Century V: 2010 Comprehensive Plan Update (City of Charleston)
- 3. Recorded Plat
- 4. Site Analysis & Topography
- 5. Aerial Overlay
- 6. Land Use Plan
- 7. Typical Street Cross Sections
- 8. Regional Watershed Map
- 9. Storm Drainage Patterns
- 10. Conceptual Utility Plan

APPENDICES

- 1. Traffic Impact Analysis
- 2. Wetland Letter
- 3. Coordination Letters

1.) Property Overview and Development Intent

The proposed Wando Village Planned Unit Development (The Property) consists of 70.37 contiguous acres located on the north side of the Wando River Bridge on SC Highway 41 (TMS #: 263-00-04-001). The Property is currently under the jurisdiction of Berkeley County and zoned as R2 - Manufactured Residential District. The majority of The Property is owned by Pastime Amusement, Inc., a subsidiary of The Beach Company, Inc. (The Developer). Mary Ellen Properties, LLC and Joyce Carolyn Properties, LLC are minority owners. This PUD Application is being submitted by The Property Owners concurrently with an Annexation application to the City of Charleston.

Currently, The Property is vacant and bounded by SC Highway 41 to the west and northwest, Tuxbury Farm Road to the northeast, and the Wando River to the south and east (See Exhibits 5-6). The Property is currently accessible from Riverbend Trail. Current conditions indicate that The Property was used as a timber tract at one time. There are a few hardwood specimens onsite that will be preserved if all possible. All development shall be subject to the specific provisions of the Tree Protection Requirements as outlined in Article 3, Part 6 of the City of Charleston Zoning Ordinance.

The wetland delineation included in the attached exhibits was conducted in 2006. A wetland delineation was also conducted for this PUD application in 2014, and The Owner is currently awaiting its approval. According to the Wetland Letter (Appendix 2), the surveyor estimates that there are approximately 2.62 acres of on-site freshwater wetlands, 6.83 acres of critical area, and 50.24 acres of highland. These figures do not include the approximately 10.7-acre critical area along the Wando River (approximately 10.7 acres). According to the 2006 survey, there are 12,330 linear fect of Critical Line on The Property of which approximately 4,800 are along the Wando River.

To ensure that The Property is developed in a comprehensive manner that incorporates open space and preserves natural features while offering a rich mix of uses and compatibility with adjacent development, The Property Owners request that PUD zoning be assigned to The Property. The PUD regulations outlined in this document will foster development that is consistent with The Property's current designation is Urban in the City of Charleston's *Century V Comprehensive Plan Update 2010* (Exhibit 2).

The intent of the PUD regulations are to create a publicly accessible Mixed-Use Village on the Wando River. The conceptual Land Use Plan illustrates the location of the two primary development pods and the permitted uses and specific requirements for each. Because the Land Use Plan (Exhibit 6) is conceptual in nature, all site plans, phasing plans, subdivision concept plans, preliminary plats, road construction plans, and final plats shall be submitted to the appropriate authority for review and approval pursuant to the provisions of this document and the City of Charleston Zoning Ordinance.

Approval of this document including the attached Land Use Plan (Exhibit 6) establishes the specific site development regulations for future development of The Property. Development of Wando Village PUD shall comply with American Disability Act (ADA) standards current at the time of development. As the community develops, input from City of Charleston staff will be incorporated into the site layout and the design of associated amenities. Unless specified otherwise within this document, all applicable City of Charleston Ordinances shall apply to the development of Wando Village.

SCDOT is currently developing plans for the reconstruction of the Highway 41 Bridge that crosses the Wando River. The PUD boundaries and circulation systems will require minor adjustments based upon the new right-of-way and roadway alignments. As illustrated in the Land Use Plan, a roundabout may be proposed for the intersection of Clements Ferry Road and Highway 41. The Owners reserve the right to adjust the circulation and the location of entrances to accommodate the roundabout if it is implemented. SCDOT approval of driveway locations and separations shall be required, and sight distance visibility at

all exits and/or intersections will be maintained in accordance with the SCDOT Access and Roadside Management Standards (ARMS) Manual.

The proposed Wando Village will be a walkable medium-density Waterfront Village offering increased public interaction with the natural beauty of the Wando River. Homes along the Wando River shall be built with regard for the context of the existing homes across the river in Dunes West. Attached Townhomes and Multi-Family Buildings are also permitted with special buffer requirements along SC Highway 41 to minimize adverse visual impacts.

a) Planning Commission Approval and Conditions:

- a. The Owners will continue to work with The City on OCRM buffer standards.
- b. The Owners will continue to work with The City on Lot Size and Placement in the area in proximity to Tuxbury Road at the North End of the Property.

2.) Master Plan

- a) Plat: Exhibit 3 features a Recorded Plat of the survey and wetlands as delineated in 2006. This document will be updated to reflect the 2014 wetland survey once that document is approved (See Appendix 2). The Recorded Plat includes the exact location, size, shape, gross acreage, and ownership as well as the approximate locations of all freshwater and saltwater wetlands and other critical areas.
- b) Site Analysis: In addition to the property line and wetland delineations in the Recorded Plat, the Site Analysis (Exhibit 4), which was also conducted in 2006, illustrates the location of existing hardwood trees and manmade features including overhead power lines, an existing structure, and an archaeological excavation site. All development shall be subject to the specific provisions of the Tree Protection Requirements as outlined in Article 3, Part 6 of the City of Charleston Zoning Ordinance.

The Property has not been surveyed for topography, but five foot contours were extracted from the US Geological Survey and are also included on the Site Analysis. Due to the extreme flatness of the site, only one 10 foot contour appears at the northernmost tip of the property, and the 5 foot contours roughly follow the OCRM critical line. Complete topographic surveys with elevations at one-foot (1') intervals based on the North American Vertical Datum of 1988 (NAVD88) will be conducted for individual sites as development occurs.

A Report on the archeological site was published in January 2007 by S&ME. In summary, the archaeological excavation is the site of a nineteenth century brickyard and borrow pit. In the report, S&ME states that excavation and data recovery efforts were sufficient to mitigate any adverse effects of development and recommends that construction be allowed to proceed without additional cultural resource investigations.

- c) Aerial Overlay: Exhibit 5 provides an overlay of the site boundary on an aerial photograph.
- d) Land Use Plan: Exhibit 6 is the proposed Land Use Plan that shows the locations and densities of the development pods, open space and recreational areas, and existing adjacent land uses. The plan also includes the conceptual layout for major vehicular and pedestrian circulation systems, drainage features, and proposed buffers. The Land Use Plan is intended to act as a guide and framework for development that will occur over a long period of time. Specific locations of

buildings and uses, however, are subject to change and amendment during the growth and development of this property.

All new utilities serving the development will be placed underground. The developer will submit utility designs for approval by all respective utility services. A Conceptual Utility Plan is included as Exhibit 10. Letters of Coordination and existing service maps for water and sanitary sewer service from Charleston Water System are provided in Appendix 3. All City of Charleston Fire Codes will be followed during submittals and as development occurs.

3.) Permitted Uses by Development Pod - Two (2) distinct development pods are indicated on the Land Use Plan. This dynamic allows for flexibility to adapt to changing market conditions while ensuring the development of an integrated, walkable, high-quality community. Specific permitted uses are as follows:

<u>Use</u>	District				
	Mixed-Use	Estate Lots			
Office/Professional/Medical	X				
Retail	X				
Dining/Restaurant/Bar	X				
Community Docks	X	X			
Boat Storage	X				
Single-Family Residential	X	X			
Townhomes	X	X			
Multi-Family Residential	X				
Hotel/Bed & Breakfast	X				
Senior Living	X				

4.) PUD Zoning Regulations by Development Pod

a) Estate Lots - The design intent for the Estate Lots District is to develop Single-Family Estate Lots along the Wando River with the potential for Townhomes as well. The plan for the Estate Lots District will be carefully developed to be sensitive to the river's edge and to existing neighbors along the river. Accessory units such as granny flats are permitted on single-family lots.

Permitted Dwelling Units: single-family detached, single family attached, and townhomes.

Dimensional Requirements:

Single-Family Detached

Minimum Lot Size:

5.000 sf

Minimum Lot Width:

50'

Minimum Lot Depth:

100'

Minimum Front Yard:

15' (50' for Accessory structures)

Minimum Rear Yard: Minimum Side Yard: 15'

Maximum Lot Occupancy:

9'

Maximum Building Height:

60%

Building Height: 3 stories (one additional level of non-conditioned space

permitted at ground level)

Max. Fence/Wall Height: 6'

Single-Family Attached and Townhomes

Minimum Lot Size: 1,600 sf Minimum Lot Width: 16' Minimum Lot Depth: 100'

Minimum Front Yard: 4' (25' with front parking)
Minimum Rear Yard: 25' (35' with rear parking)

Minimum Side Yard: 20' between structures; 10' between end structure and side lot

line

Maximum Lot Occupancy: 60%

Maximum Building Height: 3 stories (one additional level of non-conditioned space

permitted at ground level)

Max. Fence/Wall Height: 6

b) <u>Mixed-Use</u> - The areas designated for Mixed-Use District Zoning offer the most convenient access to Highway 41. The proposed zoning for this district will encourage a higher density mix of uses to include retail, offices, and other commercial facilities. Multi-family housing, residential lots, and a waterfront park are also permitted in this area. For the purposes of determining specific setback and buffer requirements, buildings featuring a mix of either residential and commercial or residential and office uses shall follow the requirements of multi-family buildings or townhomes depending upon their configuration. Townhomes within the Mixed-Use district shall follow the requirements outlined in the Estate Lots section above.

<u>Permitted Dwelling Units:</u> single-family detached, single family attached, townhomes, multifamily residential, and mixed-use buildings. Densities will migrate increasingly from the Tuxbury Road Boundary towards the Wando Bridge per the District Plan shown in Exhibit 6.

Dimensional Requirements:

Multi-Family Apartments

Minimum Lot Size: 1,100 sf/unit

For all Uses within the Mixed-Use District (excluding Townhomes):

Front yards must meet one of the following conditions:

i. Minimum setback and landscape buffer requirements not to include OCRM Critical Line buffers are waived where any building or structure is constructed so that a minimum of 60% of the lot frontage is occupied by a building façade that abuts the front property line provided that the primary entrance to the building is located on this façade. Building façade indentations or extensions which are part of the building's architectural design shall count toward the minimum 60% lot frontage requirement. On a corner lot, the building façade shall occupy at least 60% of the frontage on the primary street and no less than 25% on the secondary street. Additionally, a secondary entrance must be located on the secondary street façade. On a corner lot, the abutting building frontages must extend to the corner or have a corner entrance in which case the primary and secondary entrance requirements are waived. Service entrances may not count toward the primary, secondary, or corner entrance requirements. Stoops and open porches, bay windows, and balconies may extend up to 4 feet into the right-of-way, with an encroachment permit from the City, provided at least 5 feet of clear sidewalk passage remains. Stoops and open porches, bay windows, and balconies may extend up to 7 feet into a front set-back zone. Loading docks,

- service areas, and trash disposal facilities shall not face streets, parks, squares or significant pedestrian spaces.
- ii. Where the conditions of (i) are not met, the minimum front yard depth for all structures is ten (10) feet;

See zoning approved lot standards on page 93 of this document for mixed-use detached residential lots

Minimum Side and Rear Yard:

10' shall be required along each rear and side lot line; except that where a firewall meeting the standards of the current edition of the city's building code is constructed at the property line; the side or rear yard requirement may be waived along the respective side or rear lot line.

Maximum Building Height:

3 stories with one additional level of non-conditioned space permitted at the ground level. All local building codes applicable at the time of construction must be met with regard to fire ratings, fire exits, and all other requirements in the current International Building Code.

Minimum Building Height: 1.5 stories
Maximum Lot Occupancy: 90%

c) <u>Parking Requirements</u> – Except as noted below, parking is to be provided for all uses per the City of Charleston Zoning Ordinance standards current at the time of development. Within all districts, parking may be located under buildings. Parking structures and shared parking areas are allowed so long as they comply with the ULI standards for shared parking. In any off-street parking lot, no more than 10 consecutive parking spaces are permitted without a landscape island. Each island is to be planted with a minimum of 1 canopy tree as well as ground cover and/or shrubs. Islands are to be protected with a 6" barrier constructed of raised concrete curbing or equivalent materials.

Mixed-Use/Commercial

Dining/Restaurant/Bar 1/200 sf, plus ½ for each staff

Multi-Family Residential 1.5/unit
Retail 1/250 gross sf
Office/Professional/Medical 1/300 sf

Tice/Fibressional/Medical 1/500 S

Residential

Multi-Family Residential 1.5/unit Townhome 1.5/unit

Single-Family 2/home (off street)

5.) Open Space and Recreational Areas

The Land Use Plan indicates several areas to be dedicated as open space to serve the recreational needs of people living in, working in, and visiting Wando Village while engaging them with adjacent natural resources. Conceptually, the usable open spaces may incorporate walks, ponds, pervious paths, pools, buffers, trails, seating, lighting, and plantings. The pervious paths may be placed within designated access easements on private property within the critical line buffers so long as they are set back a minimum of 20 feet from the OCRM Critical Line. Exceptions to the 20-foot setback are permissible to provide access to water dependent structures. Pedestrian paths will connect the Estate Lots District to the Mixed-Use areas which will feature a series of accessible parks. The waterfront park will offer extensive views and allow users to directly engage with the Wando River and its marshes. All open space and recreational areas outside of the public right-of-way will be owned and maintained by the Property Owners Association (POA) as described in Section 9 of this document. Upon completion, all portions of the Wando Village PUD will be connected through ADA accessible pedestrian paths or sidewalks. See the Land Use Plan (Exhibit 6) for open space requirement calculations and locations. Within each development phase, all open space amenities will be constructed prior to final plat approval.

6.) Landscape and Buffer Requirements

In addition to the buffers outlined below, a 100' undisturbed buffer shall be maintained along the northern property line abutting Tuxbury Farm Road. The following Buffer Types refer to the City of Charleston Zoning Ordinance designations. Please refer to the City of Charleston Zoning Ordinance for buffer specifications. Landscape material used for buffer and accent planting should emphasize native materials. All materials, sizes, and spacing shall conform to the standards set forth in the City of Charleston Zoning Ordinance:

Between any use and Highway 41: Type C Buffer (average width of 25', not to go below 15').

Wherever a multi-family building (excluding townhomes), mixed-use building, or any nonresidential use is proposed for a site or lot adjoining a single-family or townhome lot: Type B Buffer (minimum width of 15').

Buffer plantings must be planned so as to screen between uses and provide a visual barrier. Existing plants may count toward buffer requirements so long as they fulfill all requirements of this section and all City of Charleston landscape and buffering requirements. Buffers shall be located along the perimeter of a lot or parcel and shall extend to the boundary line of the lot or parcel. Buffers shall not be located on any portion of an existing public or private street right-of-way. Where utility or drainage easements exist along property lines, the buffer shall be located adjacent to the casement and may be reduced by the width of the easement on the property where the buffer is required or twenty-five percent (25%) of the required buffer width, whichever is smaller.

Street trees are to be planted along all roadways according to City of Charleston Subdivision regulations (Article 8, Part 4, Section 54-831(e)).

Along OCRM Critical Lines, the following buffers apply:

Estate Lots & Mixed-Use Areas

Type L Buffer (minimum 20' width; see City of Charleston Zoning Ordinance, Article 3, Part 8, Section 54-347 and 54-348)

10' building setback from the buffer line

POA Land

Limited removal of vegetation within the OCRM buffer on POA land is permissible for views and access to water dependent structures, subject to POA guidelines. Approved boat ramps and docks, appurtenant access facilities, and other publicly accessible uses such as concessions, public yachting facilities, and civic and recreational facilities may be installed within this buffer within POA lands. Any removal of a grand tree within these buffers will require mitigation as specified in the City of Charleston Zoning Ordinance (Article 3, Part 6, Sections 54-325 through 54-339).

7.) Traffic Impact Study

Appendix 1 is a Traffic Impact Analysis prepared for the Beach Company based upon the proposed Wando Village PUD. The document is still considered to be in draft form until it is reviewed and approved by both the City of Charleston and SC Department of Transportation. Revised versions of the Traffic Impact Analysis will be submitted to the City of Charleston as they develop. Approval of the PUD does not guarantee approval of the traffic impact study as submitted. The City of Charleston Traffic and

Transportation Department (or SCDOT if SCDOT roads are impacted) has the final authority to approve site related traffic impacts and mitigation. Additional traffic impact analyses may be required on a per site/project basis if the proposed impacts are determined to be outside of the original scope of the PUD.

8.) Drainage Basin Analysis

All land within the PUD drains directly into the upper reaches of the Wando River as shown in Exhibit 8: Regional Watershed Map. The Wando River outlets into the Cooper River which flows directly into Charleston Harbor. As shown in Exhibit 9: Storm Drainage Patterns, current storm drainage either sheet flows directly into the Wando River (indicated by yellow arrows), or follows one of three other flow patterns that also discharge into the Wando River via tidal creeks. As shown on the Land Use Plan, approximately 5 acres of The Property will be devoted to stormwater retention. The stormwater drainage system will be designed to conform to the City of Charleston Stormwater Design Standards Manual and other State regulatory agency standards to ensure that development meets all stormwater discharge quality and quantity requirements. Any new topo surveys will be 1' intervals based on NAV88 datum.

9.) Density

The Wando Village PUD application proposes to maintain its current allowable density range of 8-12 units/acre. According to the 2014 draft wetland survey, the Property contains approximately 52.86 acres of highland including freshwater wetlands. **The maximum build-out is 416 units.**

10.) Rights-of-Way

The Wando Village PUD is limited to four points of ingress/egress along SC Highway 41. Approximate locations of these access points are shown in Exhibit 6; however, spacing will be adjusted according the proposed development, the proposed Highway 41 realignment, and SCDOT encroachment permits. SCDOT approval will be required for all driveway locations, and sight distance visibility at all exits and/or intersections will be maintained in accordance with the SCDOT Access and Roadside Management Standards (ARMS) Manual. The City of Charleston Department of Traffic & Transportation has the final authority to approve site related traffic impacts and mitigation. Additional traffic impact analyses may be required on a per site/project basis if the impact is determined to be outside of the original scope of the PUD.

See Exhibit 7 for typical cross sections proposed for internal roadways in Wando Village. All roads within the PUD are anticipated to be public and constructed in accordance with accepted engineering standards. Public and private roadway designs will apply civil design software to check the adequacy, maneuverability, and safety of all proposed sections and geometrics. Within the mixed-use area, plans will strive to create a grid of streets and blocks. While encouraged where feasible, on-street parking shall only be permitted in designated parking areas within the public right-of-way. Sidewalks or trails are to be provided along all roadways within the PUD for pedestrian access. Street lights are to be required in all public rights-of-way as per City of Charleston ordinances.

Other than occasional deliveries, heavy truck traffic will be prohibited within the development. No container storage or trailer stacking will be allowed. Overnight parking of eighteen-wheel vehicles is strictly prohibited.

11.) Property Owners Association and Design Review

Ownership and maintenance of all common open space areas not included in the public right-of-way shall be the responsibility of the Property Owners Association (POA). Such responsibilities include, but are not

limited to, landscaping, parking stalls, pedestrian paths, drainage, lighting, ponds, and private utilities. The Subdivision Concept Plan will outline the construction of these pedestrian paths, parks, and other open spaces. POA amenity areas are required to receive City of Charleston Technical Review Committee (TRC) review and approval, except for mail kiosks and tot lots.

Membership in the POA will be open to all persons having ownership of properties within the PUD. The POA will be managed by The Developer (or its designated representative) collecting all fees and handling POA responsibilities until such time that over one-half of the total developable land within the PUD is sold, at which time duties will be turned over to a successor chosen by the POA. A POA Board of Directors will be created to represent both the commercial and residential sections of the development. A declaration of covenants, conditions, and restrictions shall outline the specific responsibilities of the POA and shall run with the land.

Amenity space will be dedicated for uses such as a community pool and parks to serve the residential portion of the development. The initial phase of construction of these features will be the responsibility of The Developer until the POA is established. Within each development phase, all open space amenities will be constructed prior to final plat approval. Upon project completion, the POA is responsible for connecting any gaps in pedestrian connectivity as outlined in the POA declaration of covenants, conditions, and restrictions.

The Developer and POA reserve the right to establish and enforce Design Guidelines and/or a designated review board to review and approve all elements of building and site design. The POA and/or its designee shall have reasonable authority to approve all aspects of site planning, landscape and exterior architecture to include aesthetic appropriateness, environmental implications, traffic impacts and any other site specific matters not delineated.

All non-residential buildings that abut the required buffer along SC Highway 41 shall be required to follow the City of Charleston Design Review Board (DRB) review and approval process.

12.) Signage

One 'master' development sign shall be allowed within the required buffer at each entry point along SC Highway 41. Such signs shall be monument style and will require DRB review and approval. Additionally, one 'master' developer sign shall be allowed for residential developments at each entry point along internal PUD roads. Such signs shall be monument style and will require POA review and approval.

All directional and traffic signage shall conform to the Manual on Uniform Traffic Control Devices (MUTCD) Standards.

13.) Anticipated Phasing

While still conceptual in nature, it is anticipated that initial development will occur in the portion of the Mixed-Use District along the Wando River to be followed by the Estate Lots District. Timelines and the order of development are subject to change depending upon SC Highway 41 realignment projects and market conditions.

EXHIBITS

1: EXISTING ZONING OF SUBJECT & ADJACENT PARCELS

(BERKELEY COUNTY)
August 25, 2014

OWNER: PASTIME AMUSEMENT, INC. WANDO VILLAGE PUD

EXHIBIT 2: LAND USE - UPPER CAINHOY

FROM: CENTURY V: 2010 COMPREHENSIVE PLAN UPDATE August 25, 2014

EX. 3

DEVELOPER: THE BEACH COMPANY

DAVIS & FLOYD, INC. No. C00538

EDGE OF RIVER SEE NOTE 5

MARSH (SEE NOTE 5) 10.39 acres

Mondo River

WETLAND B 17,115 sq. # 0.39 acres

1.) T.M.S. 263-00-04-001 2.) PLAT BY S.M.HARPER DATED 05/13/1967 PLAT BOOK R. Pg. 74

O IRON PIPE OLD
O IRON REBAR OLD
(I.N.O. IRON PIN NEW (5/8" ROD)
**L FRESHWATER WETLAND
**L ANDS BELOW OCRM CRITICAL LINE"

THIS SURVEY.

4.) COORDINATES ESTEM, N.A.D. SYSTEM, N.A.D. SYSTEM, N.A.D. SYSTEM, N.A.D. NOTE: LANDS NOTE: LANDS NAW LINE HAS ESTEMBLED TO NAME LINE LAST NAME LINE LAST NAME LINE LAST NAME LINE LAST NAME LAST NAME LINE LAST NAME LAST N

1.) THIS PLAT REPRESENTS A SURVEY BASED ON THE LISTED REFERENCES ONLY AND IS NOT THE RESULT OF A TILLE SEARCH.

2.) THIS PROPERTY LIES IN FLOOD ZONE AE EL 11(NGVD) AS DETERMINED BY SCALING FROM F.I.R.M. 45015CO, PANIEL 737D, DATED 10/16/03.

BEFORE CONSTRUCTION AN APPROPRIATE BUILDING OFFICIAL WITH THE GOVERNING BODY SHOULD SHOULD SHOWN HEREON WERE LOCATED USING GPS TECHNOLOGY. THIS IS AN ACCURATE REPRESENTATION OF THE DELINATED AND MEETS OF THE ELILIANTED AND MEETS OF THE ELILIANDS AND REPART OF THE WELLANDS THE MICHORARY STANDARDS. THESE WETLANDS AND MEETS OF THE MICHORARY STANDARDS. THESE WETLANDS AND REPRESENTATION AND REPAIR THANDAIL AND ACCURATE AND MEETS OF THE MICHORARY STANDARDS. THESE WETLANDS AND REPRIVATIONS AND REPAIRTMENT.

EDGE OF RIVER SEE NOTE 5

ARCH.

WETLAND D
SITE

SOLATED—NON JURISDICTIONAL

22,519 ag. ft.

0.52 gcres

0

DETAIL A

R/W VARIES

WETLAND F.

WETLAND G 5,236 sq. ft. 0.12 acres

F.M.S. 263-00-04-002 SENJAMIN T. VILLEPONEAU

, 00 1

300,

Scale: 1"=300'

OWNER: PASTIME AMUSEMENT, INC. WANDO VILLAGE PUD

DEVELOPER: THE BEACH COMPANY

PLOYDErvironmental & Laboratory Services

DEVELOPER: THE BEACH COMPANY OWNER: PASTIME AMUSEMENT, INC.

WANDO VILLAGE PUD

COPYRIGHT S 2014 THOMAS & HUTTON

This map libisticies a general plan of the development which is for abcussion purposes and prior written notice to the abcider. Dimensions, boundains and postion locations from prior written notice to the abcider. Dimensions, boundains survey and property description, prior written notices and are subject to an accurate survey and property and purposes only and are supplied.

682 JOHNNIE DODDS BLVD * SUITE 100 MT. PLEASANT, SC 29464 * 843,849,0200 WWW.THOMAS ANDHUTTON.COM

PLAN 6: LAND USE EXHIBIT

OCTOBER 19, 2014

Scale: 1"=300'

EX. 6

1'' = 10'-0''

(to increase to 22' for major ingress/egress from SC Hwy 41)

Planting Parking Lane Strip (incl. gutter)

Side-walk

Right-of-Way

12,1

DEVELOPER: THE BEACH COMPANY OWNER: PASTIME AMUSEMENT, INC. **WANDO VILLAGE PUD**

Engineering
Architecture
First Total Control C Laboratory Services

> Two way traffic; Parking on one side in designated parking areas only. Vertical Curb.

and Plantings both sides.* Sidewalk

Internal alleys; One way traffic. Flush Curb.*

- Existing Grade

* Typical sections conceptual only. Actual roadway designs to vary based on site conditions and need. All public ROWs to feature street lights as per City of Charleston ordinances current at the time of design. **EXHIBIT 7: TYPICAL STREET CROSS SECTION**

August 25, 2014

WANDO VILLAGE PUDOWNER: PASTIME AMUSEMENT, INC.

DEVELOPER: THE BEACH COMPANY

DAVI SEngineering

FLOOTIGECTURE

Laboratory Services

EX. 9

OWNER: PASTIME AMUSEMENT, INC.

DEVELOPER: THE BEACH COMPANY

Laboratory Services

600′

0 300 Scale: 1"=300'

August 25, 2014

APPENDICES

APPENDIX 1

Traffic Impact Analysis

Wando Village

Draft Report - July 2014

THE BEACH COMPANY

REAL ESTATE DEVELOPMENT • SALES • LEASING • MANAGEMENT

Building Traditions Since 1945

Traffic Impact Analysis Wando Village D&F Job No. 31573.00.

Prepared for:

Charles S. Way, Jr.
Chairman
The Beach Company, Inc.
211 King St #300
Charleston, SC 29401

Prepared by:

Davis & Floyd, Inc. 3229 West Montague Avenue North Charleston, SC 29419 [843] 554 8602

INTRODUCTION

As requested, Davis & Floyd, Inc. has conducted an analysis to assess the traffic impacts associated with the new development referred to as "Wando Village" in Charleston, South Carolina. The proposed Wando Village development will be located on the north side of the Wando River Bridge on SC Highway 41 and is expected to include the construction of 35 single family homes, 565 apartment units, 15,000 sf of restaurant space, and 10,000 sf of retail space. Access to the Wando Village will be provided by three access drives along SC 41 north of the future Clements Ferry Rd/SC 41 intersection and one access drive along SC 41 south of the future Clements Ferry Rd/SC 41 intersection. The development will be constructed in phases and is anticipated to be complete and fully operational in a 7 year period, depending on market conditions.

EXISTING CONDITIONS

Project Study Area:

The study area for this project includes the following three intersections located along/near SC Highway 41.

- SC 41 / Clements Ferry Road
- SC 41 / Halfway Creek Road
- Clements Ferry Road / Reflectance Drive

Existing Intersection Geometry:

Detailed field reviews of the area were conducted in April, 2014. These reviews included site visits to document the existing roadway geometry and intersection traffic control devices as well as conducting traffic turning movement counts for the morning (6:30 AM - 8:30 AM) and PM (4:00-6:00) peak hours at the intersections. A summary of the traffic count data obtained at these locations is provided in **Figure 1**. The existing roadway conditions are summarized as follows:

SC 41 / Clements Ferry Road:

The intersection of SC 41 / Clements Ferry Road is a three-way un-signalized intersection with SC 41 making up the northbound and southbound approaches and Clements Ferry Road making up the eastbound approach. The northbound and southbound approaches of SC 41 consist of a single approach lane from which all movements are made. The eastbound approach of Clements Ferry Road consists of a single approach lane from which all movements are made. The Clements Ferry Road approach is controlled by a yield sign and the SC Highway 41 approaches are free-flow. The posted speed limit along this segment of SC Highway 41 is 35 mph and Clements Ferry Road is posted at 35 mph.

DAYIS Engineering
Architecture
FLOYD Environmental
Laboratory Services GREENWOOD * CHARLESTON * COLUMBIA 5 O U T H C A R O L I N A FIGURE 1

2014 Existing Peak Hour Traffic Volumes

SC 41 / Clements Ferry Rd / Reflectance Dr Charleston, South Carolina

SC 41 / Halfway Creek Road:

The intersection of SC 41 / Halfway Creek Road is a four-way un-signalized intersection with SC 41 making up the northbound and southbound approaches, Reflectance Drive making up the eastbound approach, and Halfway Creek Road making up the westbound approach. The northbound and southbound approaches of SC 41 consist of a single approach lane from which all movements are made. The eastbound approach of Reflectance Drive and westbound approach of Halfway Creek Road consist of single approach lanes from which all movements are made. The Reflectance Drive and Halfway Creek Road approaches are controlled by a stop sign and the SC Highway 41 approaches are free-flow. There are flashing beacons on each approach. The posted speed limit along SC Highway 41 Road is 45 mph, the posted speed limit on Halfway Creek Road is 55 mph and the speed limit on Reflectance Drive is 40 mph.

Clements Ferry Road / Reflectance Drive

The intersection of Clements Ferry Road / Reflectance Drive is a three-way unsignalized intersection with Clements Ferry Road making up the eastbound and westbound approaches, and Reflectance Drive making up the southbound approach. The eastbound and westbound approaches of Clements Ferry Road consist of a single approach lanes from which all movements are made. The southbound approach of Reflectance Drive consists of a single approach lane from which all movements are made. The Reflectance Drive approach is controlled by a stop sign and the Clements Ferry Road approaches are free-flow. The posted speed limit along this segment of Clements Ferry Road is 35 mph and Reflectance Drive is 40 mph.

Existing Traffic Operations:

The Level-of-Service (LOS) analysis is used to provide an evaluation of the overall operational conditions within the traffic stream. The LOS is defined in the Transportation Research Board's Highway Capacity Manual as a "qualitative measure describing operational conditions within a traffic stream, based on service measures such as speed, travel time, freedom to maneuver, traffic interruptions, comfort, and convenience." Six LOS categories have been defined and given letter designations from "A" to "F" with "A" representing the best operational conditions (minimal interruptions, good progression) and "F" representing the worst conditions (severe congestion, slow travel speeds). A summary of the delay associated with each LOS is summarized in Table 1. Acceptable intersection service levels are generally considered to be LOS "ID" or better.

^{1.} Highway Capacity Manual, p. 5-8, Transportation Research Board, National Research Council, Washington, D.C. 2000

TABLE 1 Intersection Delay and LOS

Level of Service	Un-signalized Intersection Average Control Delay (seconds/vehicle)	Signalized Intersection Average Control Delay (seconds/vehicle)		
Α	0 - 10	≤10		
В	>10 - 15	>10 - 20		
C	>15 - 25	>20 - 35		
D	>25 - 35	>35 – 55		
E	>35 - 50	>55 – 80		
F	>50	>80		

In order to assess the overall performance of the existing intersections, a LOS analysis has been performed using SYNCHRO Studio 7 traffic modeling software. The results of this analysis are provided in Table 2.

TABLE 2
Existing Traffic Conditions

	2014 – Existing Traffic Conditions								
Un-signalized Intersections		AM Peak Ho	PM Peak Hour						
	LOS	Delay	V/C	LOS	Delay	V/C			
SC 41 / Clements Ferry Road ¹	С	19.2	0.46	С	17.5	0.29			
SC 41 / Halfway Creek Road ¹	В	13.8	0.26	В	13.4	0.32			
Clements Ferry Road / Reflectance Drive ¹	С	17.8	0.44	В	10.4	0.09			

¹ LOS/ Delay/ V/C shown for the critical intersection approach

As indicated in Table 2 above, each of the study area intersections are operating at acceptable levels (LOS D or better) for both the AM and PM Peak traffic hours.

2021 "NO-BUILD" CONDITIONS

Area Growth Rate:

In order to assess the baseline traffic conditions expected for the 2021 project horizon year, historic traffic volumes were reviewed for both Clements Ferry Road and SC Highway 41 (SCDOT count stations #198 and #269) over the past 7 years. It was determined that the roadways have collectively experienced a negative annual growth. However, in order to provide a conservative analysis for future growth, a 1.0% annual growth rate was utilized to develop 2021 No Build traffic volumes. The historic traffic volumes and annual growth rates are provided in Table 3.

TABLE 3
Background Growth Rate

Station	Road	Location	2005	2012	% annual Growth	Use
198	SC 41	Joe Rouse Rd to Berk. Co. Line	13,500	12,100	-1.55%	1%
269	Clements Ferry	SC 41 to Jack Primus	15,500	14,800	-0.66%	1%

2021 "No-Build" Analysis:

A level-of-service analysis has been conducted to assess the anticipated roadway conditions during the 2021 project horizon year. The traffic volumes assumed for this analysis include the conservative 1% annual growth in background traffic. It should be noted, that the SC 41 / Clements Ferry Road intersection geometry and location is currently being improved by the SCDOT. Preliminary SCDOT plans for the "S.C. Route 41 Bridge Replacement over Wando River" project provided by ICA Engineering show the new intersection north of its current location. The existing intersection will be converted to a "tee" type intersection where the Clements Ferry Road eastbound approach and SC 41 northbound approaches will be aligned as the "through" movements and the SC 41 southbound approach will be a side street approach. The northbound approach of SC 41 will include a right turn lane and a through lane. The future intersection will be signalized. These improvements have been reflected in the analysis for the 2021 "No-Build" traffic conditions. The traffic volumes associated with the 2021 "No-Build" conditions are summarized in Figure 2. The results of this analysis are provided in Table 4.

TABLE 4
2021 "No-Build" Traffic Conditions

	2021 - "No-Build" Traffic Conditions						
Signalized Intersections	AM Pea	PM Peak Hour					
	LOS	Delay	LOS	Delay			
SC 41 / Clements Ferry Road ¹	В	10.4	Α	7.8			
SC 41 / Halfway Creek Road ²	В	15.0	В	12.2			
Clements Ferry Road / Reflectance Drive ²	С	20.1	В	10.7			

- LOS / Delay shown for the overall intersection operation
- 2 LOS/ Delay shown for the critical intersection approach

As indicated above, each of the study area intersections is expected to operate at acceptable service levels (LOS D or better) for the 2021 "No-Build" traffic scenario.

DAYIS Tribleton FLOYD Consists Services

FIGURE 2

2021 "No-Build" Peak Hour Traffic Volumes

SC 41 / Clemente Ferry Rd / Reflectance Dr Charleston, South Caralina

PLANNED DEVELOPMENT

Site Development and Access:

The proposed Wando Village is expected to include the construction of 35 single family homes, 565 apartment units, 15,000 sf of restaurant space, and 10,000 sf of retail space. Access to Wando Village will be provided by three access drives along SC 41 north of the future Clements Ferry Rd/SC 41 intersection and one drive along SC 41 south of the future Clements Ferry Rd/SC 41 intersection. A conceptual site plan for the development is provided in **Figure 3**.

Trip Generation:

In order to estimate the traffic that could be expected for this development, the trip generation rates provided in the *Trip Generation Manual*, 9th Edition, published by the Institute of Transportation Engineers were applied to the proposed land uses in order to estimate the total site traffic. ITE Land Use Codes #210 (Single Family Detached Housing), #222 (High-Rise Apartment), #826 (Specialty Retail Center), and #932 (High-Turnover (Sit Down) Restaurant), were used to predict the site traffic for this multi-use facility. Due to the retail nature of the development, internal and pass-by capture was also considered in the trip generation estimates. Internal capture considers interaction between multiple uses in a development and pass-by traffic is attracted from the existing traffic volumes on adjacent roadways and reduces the new trip impacts of a retail project site. Internal and pass-by capture was estimated using information contained in ITE's Trip Generation Handbook, 2nd Edition (2004) reference. A summary of the expected traffic volumes are provided in Table 5.

TABLE 5
Site Trip Generation

Land Use	ITE LUC	Scale	Weekday			Weekday AM Peak Hour			Weekday PM Peak Hour		
			Inbound	Outbound	Total	Inbound	Outbound	Total	Inbound	Outbound	Total
Single Family	210	35 lots	200	200	400	9	26	34	26	15	41
Apartment	222	565 units	1172	1172	2344	42	127	170	118	75	193
Restaurant	932	15,000 sf	954	954	1907	89	73	162	89	59	148
Retail	826	10,000 sf	233	233	465	79	86	165	20	25	45
	G	ross Trips:	2559	2559	5116	219	311	531	252	175	427
-	Internal Car	ture Trips:							-6	-5	-11
	ass-by Car	ture Trips:							-38	-25	-63
	New, Exte	ernal Trips:	2559	2559	5116	219	311	531	209	145	353

* Calculations, locations, and area designations are conceptual only and based on approximate measurements. Actual calculations to be updated according to approved surveys and plats as development ocurs Mixed Use 26.5 Ac. 70.37 x 20% = 14.1 Ac. 14.1 x 25% = 3.5 Ac **Usable Required** 52.86 Acres High Ground (including Freshwater Welands) 17.51 Acres Marsh Estate Lots 14.8 Ac. Land Use Table* 70.37 Total Acres Open Space Open Space 5.0 Ac. TYPE B OR C BUFFER 17.51 + 5.0 = 22.5 Ac. Usable Proposed 3.5 Ac. Proposed Salt Marsh 17.4 Ac. ENTRY VACANT POM 14.8 ac x 12 units/ac = 178 max units 26.5 ac x 12 units/ac =318 max units Residential Density*
Waximum Density: 12 units/acre **Estate Lots** Mixed Use POND. 100Ac POME MARSH WANDO RIVER WANDO RIVER WANDO VILLAGE PUD OWNER: PASTIME AMUSEMENT, INC. DEVELOPER: THE BEACH COMPANY DAVIS Engineering
FLOYD Environmental &

> 3229 W. MONTAGUE AVENUE CHARLESTON, SC 2948 (843) 554-8602

EXHIBIT 7: LAND USE PLAN

August 4, 2014

Scale: 1"=300'

EX. 7

FIGURE 3

Wando Village Conceptual Site Plan

Wando Village Charleston, South Carolina

Trip Distribution:

The trip distribution pattern for the proposed Wando Village is based on the existing traffic patterns observed on the surrounding roadways. Based upon this information, the general distribution of new project trips was assumed to be:

- 45% to/from Clements Ferry
- 35% to/from Mt. Pleasant
- 20% to/from SC 41 relocated

2021 Build Traffic Conditions:

In order to assess the impacts of this development at full build-out in 2021, the 2021 "No-Build" traffic volumes were combined with the trip generation projections and the trip distribution patterns to develop the 2021 "Build" traffic volumes. The anticipated 2021 "Build" traffic volumes are shown in **Figure 4**. The study area intersections were then analyzed to determine the impacts of the additional site traffic. A summary of the analysis for the 2021 "Build" traffic conditions is provided in Table 6.

TABLE 6
2021 Build Traffic Conditions

	2021 - "Build" Traffic Conditions					
Intersections	AM Pe	ak Hour	PM Peak Hour			
	LOS	Delay	LOS	Delay		
SC 41 / Clements Ferry Road¹	В	18.7	В	11.6		
SC 41 / Halfway Creek Road ²	В	14.2	В	13.3		
Clements Ferry Road / Reflectance Drive ²	С	22.0	В	10.7		
SC 41 / Site Access #12	В	11.2	В	10.7		
SC 41 / Site Access #2 ²	В	11.7	В	10.9		
SC 41 / Site Access #32	В	12.9	В	12.0		
SC 41 / Site Access #42	С	15.2	В	14.4		

- LOS / Delay shown for the overall intersection operation.
- 3 LOS/ Delay shown for the critical intersection approach

As indicated in the level-of-service analysis, each of the study area and site access intersections is expected to operate at acceptable service levels (LOS D or better) for the 2021 "Build" traffic scenario.

3229 W. MONTAGUE AYENU CHARLESTON, SC 29488 (843) 554-8602

PLOYD Engineering
Architecture
FLOYD Environmental
Laboratory Services
CREENWOOD: CHARLESTON - COLUMBIA

FIGURE 4

2021 "Build" Peak Hour Traffic Volumes

SC 41 / Clements Ferry Rd / Reflectance Dr Charleston, South Carolina

RECOMMENDATIONS / CONCLUSIONS

The traffic volumes associated with the construction of the Wando Village are not expected to have a significant impact on the surrounding roadway network. As indicated in this analysis, the 2021 "Build" traffic conditions at all of the study area and site access intersections are expected to operate at acceptable service levels (LOS D or better).

In order to address the impacts directly associated with the Wando Village project, the following intersection improvements are recommended:

- SC 41 / Site Access #1:
 - Construct a single turn lane from which all movements are made for the outbound approach and one lane for the inbound approach of site access #1.
- SC 41 / Site Access #2:
 - Construct new single turn lane from which all movements are made for the outbound approach and one lane for the inbound approach of site access #2.
- SC 41 / Site Access #3:
 - Construct a right turn lane (150' storage / 150' taper) and left turn lane for the outbound approach and one lane for the inbound approach of site access #3.
- SC 41 / Site Access #4:
 - Construct a right turn lane (150' storage / 150' taper) and left turn lane for the outbound approach and one lane for the inbound approach of site access #4.

The site access locations used in this analysis were based on a conceptual site plan provided by the client and preliminary roadway design plans provided by ICA Engineering. The site access locations will need to be coordinated with and approved by the SCDOT to ensure they complement the planned roadway improvements along SC 41 and Clements Ferry Road.

APPENDIX A
Traffic Counts

735 Maryland St. Columbia, SC 29201 You Can Count On Us!

Default Comments Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

File Name: SC 41 @ Halfway Creek Rd Site Code: 00043014

Start Date : 4/30/2014

		SC Southb	ound			lalfway (Westb				SC Northb			ŀ	laifway (Eastb	Creek Rd	7 200	
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tot
06:30	1	41	22	0	16	20	0	0	1	4	2	0	15	5	1 I	0	
06:45	1_	43	20	0	15	15	0	0	2	13	ī	ő	7	4	2	0	1
Total	2	84	42	0	31	35	0	0	3	17	3	0	22	9	3	0	12
07:00	1	26	15	0	13	17	1	0	1	17	2	0	7		_		
07:15	1	35	22	0	14	11	i	ő	ò	19	4	0	9	4 2	5	0	10
07:30	1	35	31	0	6	20	i	0	6	18	5	0	8		l l	0	1
07:45	0	35	23	0	6	13	0	ő	0	22	2	0	13	6	4	0	14
Total	3	131	91	0	39	61	3	0	7	76	13	0	37	5 17	12	0	12
08:00	0	38	13	0	9	15	0	۰ ا	1			. 1			•-	v	. 42
08:15	ő	36	21	0	11	18	0	0	I	12	6	0	9	6	1	0	11
* BREAK ***				U		10	U	U	3	17	7	0	7	6	3	0	12
Total	0	74	34	0	20	33	0	0	4	29	13	0	16	12	4	O	2.3
* BREAK ***																	
16:00	0	21	9	0	6	8	1	0	1	20	9	0	20	8	0	0	•
16:15	0	10	6	0	2	4	2	0	1	31	9	ő	13	16	1	0	10
16:30	2	21	2	0	7	3	0	0	- 1	28	8	0	17	15	2	0	9
16:45	1	18	8	0	11	3	1	0	3	25	7	0	14	9	0	0	10
Total	3	70	25	0	16	18	4	0	6	104	33	0	64	48	3	0	39
17:00	1	19	11	0	3	4	4	o	1	30	9	0	10		_	. 1	
17:15	0	9	6	0	2	3	0	0	0	23	10	0	19 25	. 8	2	0	11
17:30	0	20	6	0	7	7	ő	0	0	23	13	0	25 16	14	2	0	9
17:45	0	14	5	0	9	4	0	0	0	34	5	0		20	5	0	11
Total	1	62	28	0	21	18	4	0	1	108	37	0	14 74	16 58	10	0	10 42
Grand Total	9	421	220	0	127	165	- 11	0	21	334	99	0	212	19020			
Apprch %	1.4	64.8	33.8	0	41.9	54.5	3.6	0	4.6	73.6	21.8	0	213	144	32	0	179
Total %	0.5	23.4	12.2	0	7.1	9.2	0.6	0	1.2	18.6	5.5	0	54.8	37	8.2	0	
Unshifted	7	401	176	0	119	146	10	0	18	325	88	0	11.9	8	1.8	0	
% Unshifted	77.8	95.2	80	0	93.7	88.5	90.9	0	85.7	97.3	88.9	0	159	133	31	0	161
Bank 1	1	19	42	0	8	18	1	0	3	97.3	11	0	74.6	92.4	96.9	0	89.
% Bank I	11:1	4.5	19.1	0	6.3	10.9	9.1	0	14.3	2.7	1181	0	52	11	1	0	17
Bank 2	1	1	2	0	0.0	1	0	0	0	0	0	0	24.4	7.6	3.1	0	9.
% Bank 2	11:1	0.2	0.9	0	0	0.6	U	v	v	v	U	U	,	0	0	0	

735 Maryland St. Columbia, SC 29201

You Can Count On Us!

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

Default Comments

File Name: SC 41 @ Halfway Creek Rd

Site Code : 00043014

Start Date : 4/30/2014

735 Maryland St. Columbia, SC 29201 You Can Count On Us!

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

File Name: SC 41 @ Halfway Creek Rd

Site Code : 00043014 Start Date : 4/30/2014

O. Tri			SC 41	ınd			V	vay Cre Vestbou	ınd			N	SC 41					vay Cre			
Start Time			Right		App. Tistal	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App Total	Left		Right		App Total	Int Total
Peak Hour An						I													. 003	App rous	int. Lota
Peak Hour for	Entire i	ntersec	tion Bo	egins at	07:30																
07:30	1	35	31	0	67	6	20	1	0	27	6	18	5	0	29	8	_		•		1
07:45	0	35	23	0	58	6	13	0	0	19	0	22	3	0		-	6	4	0	18	141
08:00	0	38	13	0	51	9	15		-					-	24	13	5	2	0	20	121
	, i			_	-33			0	0	24	- 1	12	6	0	19	9	6	1	0	16	110
08:15	0	36	21_	0	57	- 11	18	0	0	29	3	17	7	0	27	7	6	3	0	16	129
Total Volume	1	144	88	0	233	32	66	1	0	99	10	69	20	0	99	37	23	10	0	70	501
% App. Total	0.4	61.8	37.8	0		32.3	66.7	ī	0		10.1	69.7	20.2	0		52.9	32.9	14.3	0	70	301
PHF	.250	.947	-710	.000	.869	.727	.825	.250	.000	.853	.417	.784	.714	.000	.853	.712	958	.625	.000	one	000
12.											-		27.6	.000	2000	.:14	-730	.023	.000	.875	.88

735 Maryland St. Columbia, SC 29201 You Can Count On Us!

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

File Name: SC 41 @ Halfway Creek Rd Site Code: 00043014

Site Code : 00043014 Start Date : 4/30/2014

			SC 41 uthbou					vay Cre estbou				N	SC 41					vay Cre			
Start Time	Left	Thr u	Rig ht	Ped s	App Total	Left	Thr	Rig ht	Pcd s	App Treas	Left	Thr u	Right	Peds	App Total	Left	Thr	Right	Peds	App Total	Int. Tota
Peak Hour An	alysis F	rom 16:	00 to 1	7:45 - F	eak 1 of	1											u			-	
Peak Hour for	Entire I	ntersec	tion Be	gins at	17:00																
17:00	1	19	11	0	31	3	4	4	0	11	1	30	9	0	40	19	8	2	0	29	ĺп
17:15	0	9	6	0	15	2	3	0	0	5	0	23	10	ō	33	25	14	2	0	3753333	
17:30	0	20	6	0	26	7	7	0	0	14	0	21	13	0	34	16	20	_		41	9.
17:45	0	14	5	0	19	9	4	0	Õ	13	ő	34	.5	0	39			5	0	41	11:
Total Volume	1	62	28	0	91	21	18	4	0	43	ĭ	108	37	_	1000	14	16		0	31	102
% App. Total	1.1	68.1	30.8	0		48.8	41.9	9.3	0	43	0.7	1000	1401010200	0	146	74	58	10	0	142	422
PHF	.250	.775	.636	.000	.73-4	.583	.643	.250		7/0		74	25.3	0		52.1	40.8	7	0		
	.200	1113	.030	.000	. /34		,043	.230	.000	.768	.250	.794	.712	.000	.913	.740	.725	.500	.000	.866	.917

735 Maryland St. Columbia, SC 29201 You Can Count On Us!

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

File Name : SC 41 @ Clements Ferry Rd Site Code : 00043014

Start Date : 4/30/2014

		SC	41		(roups P	rinted- L	inshifted	- Bank I								
L		Southb				Westb	ound			SC			C	lements I			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Northb Thru		Peds		Eastbo			
06:30	0	57	0	0	0	0	0	0	144	8	Right	100000000000000000000000000000000000000	Left	Thru	Right	Peds	Int. Total
06:45	0	54	0	ő	0	0	0	0	124	11	0	0	0	0	51	0	260
Total	0	111	0	0	0	0	0	0	268	19	0	0	0	0	60	0	249
			ŭ	0 1	Ū	v	v	U	400	19	U	0	0	0	111	0	509
07:00	0	48	0	0	0	0	0	0	150	21	0	0	0	0	92		
07:15	0	51	0	0	0	0	0	ő	137	27	0	0	0	0	92 83	0	311
07:30	0	54	0	0	0	0	0	ő	122	21	0	0	ı	0	103	0	298
07:45	0	46	0	0	0	0	0	Ö	126	26	0	0	;	0	92	0	301
Total	0	199	0	0	0	0	0	0	535	95	0	0	2	0	370	0	291 1201
lo.	·								177	,,,	·	O	- 	U	370	U	120
08:00	0	45	0	0	0	0	0	0	114	20	0	0	0	0	91	0	270
08:15	0	54	0	0	0	0	0	0	120	22	0	0	ő	0	79	0	275
*** BREAK ***													•	v	10	U	2/3
Total	0	99	0	0	0	0	0	0	234	42	0	0	0	0	170	0	545
AND DEED AND ALL														-	•	Ü	542
*** BREAK ***																	
16:00		22		0	0			_ 1									
16:15	0	32 14	0	0	0	0	0	0	60	36	0	1	0	0	111	0	240
16:30	0	26	0	0	0	0	0	0	89	39	0	0	0	0	106	0	248
16:45	0	25	0		0	0	0	0	76	41	0	0	0	0	135	0	278
Total	0	97	0	0	0	0	0	0	68	41	0	0	0	0	150	0	284
I Ola I	U	9/	U	0	U	0	0	0	293	157	0	I	0	0	502	0	1050
17:00	0	27	1	0	0	0	0	0			_						
17:15	0	12	0	0	0	0	0	0	65	42	0	0	0	0	157	0	292
17:30	0	28	0	0	0	0	0	0	78	36	0	0	0	0	195	0	321
17:45	ő	29	0	0	0	0	0	0	80	39	0	0	0	0	196	0	343
Total	0	96	1	0	0	0	0	0	72 295	44	0	0	0	0	169	0	314
10.01	Ü	70	,	O	U	U	U	0	295	161	0	0	0	0	717	0	1270
Grand Total	0	602	1	0	0	0	0	0	1625	474							
Appreh %	0	99.8	0.2	0	0	0	0	0	77.4	22.6	0	1	2	0	1870	0	4575
Total %	0	13.2	0.2	0	0	0	0	0	77.4 35.5	10.4	0	0	0.1	0	99.9	0	
Unshifted	0	568	1	0	0	0	0	0	1606	450	0	0	0	0	40.9	0	
% Unshifted	0	94.4	100	0	0	0	0	0	98.8	450 94.9	0	100	2	0	1836	0	4464
Bank I	0	33	0	0	0	0	0	0	90.8	24	0	100	100	0	98.2	0	97.6
% Bank 1	Ö	5,5	0	0	0	0	0	0	1.1	24 5.1	0	0	0	0	30	0	105
Bank 2	0	i	0	0	0	0	0	0	1.1	0	0	0	0	0	1.6	0	2.3
% Bank 2	0	0.2	0	0	0	0	0	0	0.1	0	0	0	0	0	4	0	6
- 1	-	7.57	-	•	•	v	U	0	0.1	U	U	U	0	0	0.2	0	0.1

735 Maryland St. Columbia, SC 29201

You Can Count On Us! Change These in The Preferences Window

Default Comments

Select File/Preference in the Main Scree

Then Click the Comments Tab

File Name: SC 41 @ Clements Ferry Rd

Site Code : 00043014 Start Date : 4/30/2014

735 Maryland St. Columbia, SC 29201 You Can Count On Us!

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree Then Click the Comments Tab

File Name: SC 41 @ Clements Ferry Rd

Site Code : 00043014 Start Date : 4/30/2014

5				SC 41	ınd				Vestbou				N	SC 41					ents Fe	-		
	tart Time			Right		App. Total	Left	Thru	Right	Peds	App Yotal	Left	Thru	Right	Peds	App Total	Left	Thru	Right		App Total	Int Total
Pe	ak Hour An	alysis F	rom 06	:30 to 0	8:15 - i	Peak 1 of	I														App roas	HIL TOUR
Pe	ak Hour for	Entire	Intersec	ction Be	gins at	07:00																
٠.	07:00	0	48	0	_ 0	48	0	0	0	0	0	150	21	n	0	171	0	^	0.3			1
	07:15	0	51	0	0	51	0	0	0	0	ñ	137	27	ő	0		-	0	92	0	92	311
Λ.	07:30	0	54	0	0	54	0	0	0	ő	0	39 777		-	-	164	0	0	83	0	83	298
	07:45	ő	46	-	-		_	-		-	U	122	21	0	0	143	1	0	103	0	104	301
				0	0	46	0	0	0	0	0	126	26	0	0	152	- 1	- 0	92	- 0	93	291
	otal Volume	0	199	0	0	199	0	0	0	0	0	535	95	0	0	630	2	0	370	0		
%	App. Total	0	100	0	0		0	0	0	- 0		84.9	15:1	0	0	050	0.5	-		_	372	1201
	PHF	.000	.921	.000	.000	.921	.000	.000	.000	.000	.000	.892	.880	.000		031		0	99.5	0		
								1000	1000	.000	.000	.072	.000	.000	.000	.921	.500	.000	.898	.000	.894	.965

735 Maryland St. Columbia, SC 29201

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

You Can Count On Us! File Name: SC 41 @ Clements Ferry Rd

Site Code : 00043014 Start Date : 4/30/2014

			SC 41	nd			W	estbou	nd			N	SC 41					ents Fe	rry Rd		
Start Time	Left	Thr u	Rig ht	Ped s	App Youl	Left	Thr	Rig ht	Ped s	App. Treat	Left	Thr u	Right	Peds	App. Treat	Left	Thr	Right	Peds	App Total	Int. Total
Peak Hour An	alysis Fi	rom 16:	:00 to 1	7:45 - P	cak I of	1															
Peak Hour for	Entire I	ntersec	tion Be	gins at	17:00																
17:00	0	27	1	0	28	0	0	0	0	0	65	42	0	0	107	0	0	157	0	167	202
17:15	0	12	0	0	12	0	0	0	0	0	78	36	0	0	114	0	0	195	0	157 195	292 321
17:30	0	28	0	0	28	0	0	0	0	0	80	39	0	0	119	ő	0	196	0	195	
17:45	0	29	0	0	29	0	0	0	0	0	72	44	Õ	ő	116	ő	0	169	0		343
Total Volume	0	96	1	0	97	0	0	0	0	0	295	161	0	0	456	0	0	717	- 27	169	314
% App. Total	0	99	1	0		0	0	0	0	ŭ	64.7	35.3	0	- 0	750	0	0	100	0	717	1270
PHF	.000	.828	.250	.000	.836	.000	.000	.000	.000	.000	.922	.915	.000	.000	.958	.000	.000	.915	.000	016	.926
_														-000	.220	.000	.000	713	.000	.915	.92

735 Maryland St. Columbia, SC 29201

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

You Can Count On File Name: Clements Ferry @ Reflectance Dr Site Code: 00043014 Start Date : 4/30/2014

			Reflectar				Groups P Clements	Ferry				Landing			Clement	c Ferry		7
			Southb				Westbe				Northb				Eastb			
_	Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
	06:30	0	0	45	0	0	138	0	0	0	0	0	0	20	42	0	1 cus	246
Ш.	06:45	2	0	40	0	0	133	1	0	0	0	3	0	10	62	0	0	251
	Total	2	0	85	0	0	271	1	0	0	0	3	0	30	104	0	1	497
	07:00	0	0	28	0	0	148	0	0	2	0	1	0	10				
100	07:15	1	0	34	0	ī	140	0	ő	1	0	1	0	12	90	0	0	281
	07:30	0	0	53	0	i	127	ő	0	i	0	3	0	16	80	0	0	274
	07:45	i	0	40	0	Ô	121	i	ő	i	0	3	0	15 21	97	0	0	297
100	Total	2	0	155	0	2	536	i	0	5	0	6	0	64	91	0	0	277
	90.00	_						•	0	3	U	O	U	04	358	0	0	1129
-	08:00	0	0	34	0	0	120	0	0	0	0		0	15	89	0	0	259
	08:15 * BREAK ***	0	0	46	0	0	117	0	0	2	0	2	0	8	81	o	0	256
	Total	0	0	80	0	0	237	0	0	2	0	3	0	23	170	0	0	515
۵.,	* BREAK ***											-			110	Ū	U	313
	BREAK																	
	16:00	1	0	18	0	0	63	0	0	1	0	0	0	27	120	2	0	232
1/2	16:15	1	0	11	0	1	77	0	0	0	0	0	0	35	116	ī	0	242
	16:30	0	0	6	0	0	72	0	0	- 1	0	0	0	28	138	i	0	242
	16:45	0	0	14	0	0	69	0	0	0	0	2	0	27	153	i	0	266
3	Total	2	0	49	0	1	281	0	0	2	0	2	0	117	527	5	0	986
1	17:00	0	0	17	0	1	65	0	0	1	0	1	0	41	178	4	0	308
	17:15	0	0	11	0	0	77	1	0	1	0	0	ő	45	188	1	0	308
-	17:30	0	0	14	0	3	70	2	0	1	0	ī	ŏ	38	185	2	0	316
1	17:45	0	0_	11	0	0	77	0	0	. 2	0	1	0	28	170	ĩ	0	290
	Total	0	0	53	0	4	289	3	0	5	0	3	0	152	721	8	0	1238
	Grand Total	6	0	422	0	7	1614	5	0	14	0	17	0	386	1880	13	1	42.00
3	Apprch %	1.4	0	98.6	0	0.4	99.3	0.3	0	45.2	ő	54.8	ő	16.9	82.5	0.6	0	4365
1	Total %	0.1	0	9.7	0	0.2	37	0.1	0	0.3	o	0.4	ő	8.8	43.1	0.3	0	
	Unshifted	6	0	357	0	7	1600	5	0	14	0	17	0	322	1848	13	1	4190
	% Unshifted	100	0	84.6	0	100	99.1	100	0	100	0	100	ŏ	83.4	98.3	100	100	96
	Bank 1	0	0	62	0	0	13	0	0	0	0	0	0	62	27	0	0	164
l -	% Bank I	0	0	14.7	0	0	0.8	0	0	0	0	0	ŏ	16.1	1.4	0	0	3.8
	Bank 2	0	0	3	0	0	I	0	0	0	0	0	0	2	5	0	0	3.8
	% Bank 2	0	0	0.7	0	0	0.1	0	0	0	0	Õ	ő	0.5	0.3	0	0	0.3

735 Maryland St. Columbia, SC 29201

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

You Can Count On File Name : Clements Ferry @ Reflectance Dr

Site Code : 00043014 Start Date : 4/30/2014

735 Maryland St. Columbia, SC 29201

Default Comments

Change These in The Preferences Window Select File/Preference in the Main Scree

Then Click the Comments Tab

You Can Count On File Name: Clements Ferry @ Reflectance Dr

Site Code : 00043014 Start Date : 4/30/2014

		So	ectance uthbou	ınd			ν	ments I Vestbou	_				hoy La orthbot					ments I	-		
Start Time			Right		App Total	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tat
Peak Hour Ana						1							1000					Men	1003	App. rous	III. I OL
Peak Hour for I	Entire I:	ntersec	tion Be	gins at	07:00																
07:00	0	0	28	0	28	0	148	0	0	148	2	0	1	0	3	12	90	0	0	103	1 20
07:15	1	0	34	0	35	1	40	0	0	141	ī	0	i	0	3			_	0	102	28
07:30	0	0	53	0	53	i	127	0	ő			-			2	16	80	0	0	96	27
		-		_			- 70	U	-	128	1	0	3	0	4	15	97	0	0	112	29
07:45		0	40	0	41	0	121	1	0	122	I	0		0	2	21	91	- 0	0	112	27
Total Volume	2	0	155	0	157	2	536	i	0	539	5	0	6	0	11	64	358	0	0	422	112
% App. Total	1.3	0	98.7	0		0.4	99.4	0.2	0		45.5	0	54.5	0		15.2	84.8	0		422	112
PHF	.500	.000	.731	.000	.741	.500	.905	.250	.000	.910	.625	.000	.500	.000	.688	.762	.923	.000	.000	.942	.95

735 Maryland St. Columbia, SC 29201

Default Comments

Change These in The Preferences Window

Select File/Preference in the Main Scree

Then Click the Comments Tab

You Can Count On File Name: Clements Ferry @ Reflectance Dr

Site Code : 00043014

Start Date : 4/30/2014

			ectance uthbou					nents F estbou	17 / CO. O. M. C.				hoy La orthboi	-				nents F	,		
Start Time	Left	Thr u	Rig ht	Ped s	App Tabl	Left	Thr u	Rig ht	Pcd s	4pp Total	Left	Thr u	Right	Peds	App. Total	Left	Thr u	Right	Peds	App. Total	Int. Tota
Peak Hour Ana	alysis Fi	rom 16:	00 to 1	7:45 - F	eak 1 of	1															
Peak Hour for	Entire I	ntersec	tion Be	gins at	17:00																
17:00	0	0	17	0	17	1	65	0	0	66	1	0	1	0	2	41	178	4	0	223	308
17:15	0	0	11	0	11	0	77	1	0	78	1	0	0	0	1	45	188	1	0	234	324
17:30	0	0	14	0	14	3	70	2	0	75	1	0	1	0	2	38	185	2	0	225	316
17:45	0	0	- 11	0	11	0	77	0	0	77	2	0	1	0	3	28	170	1	0	199	290
Total Volume	0	0	53	0	53	4	289	3	0	296	5	0	3	0	8	152	721	8	0	881	1238
% App. Total	0	0	100	0		1.4	97.6	- 1	0		62.5	0	37.5	0		17.3	81.8	0.9	0		
PHF	.000	.000	.779	.000	.779	.333	.938	.375	.000	.949	.625	.000	.750	.000	.667	.844	.959	.500	.000	.941	.955

APPENDIX B
Existing Conditions

	_#	-	←	2	4	1
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		स	p		14/	OTTI
Volume (veh/h)	64	358	536	1	2	155
Sign Control	•	Free	Free		Stop	100
Grade		0%	0%		0%	
Peak Hour Factor	0.76	0.92	0.91	0.90	0.50	0.73
Hourly flow rate (vph)	84	389	589	1	4	212
Pedestrians			500		7	212
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		140110	THORIC			
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	590				1147	590
vC1, stage 1 conf vol	000				1147	390
vC2, stage 2 conf vol						
vCu, unblocked vol	590				1147	590
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					0.4	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	91				98	58
cM capacity (veh/h)	985				201	508
					201	300
Direction, Lane #	EB 1	WB 1	SW 1			
Volume Total	473	590	216			
Volume Left	84	0	4			
Volume Right	0	1	212			
cSH	985	1700	494			
Volume to Capacity	0.09	0.35	0.44			
Queue Length 95th (ft)	7	0	55			
Control Delay (s)	2.4	0.0	17.8			
Lane LOS	Α		С			
Approach Delay (s)	2.4	0.0	17.8			
Approach LOS			С			
Intersection Summary		ar FILL				
Average Delay			3.9			
Intersection Capacity Utilization	ation		70.4%	IC	U Level o	f Service
Analysis Period (min)			15			

	*	†	7	4	↓	لر	<i>•</i>	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	02%	4			4		1100	4	INCIN	OVVE	4	SVVI
Volume (veh/h)	3	131	91	7	76	13	37	17	12	39	61	2
Sign Control		Free		•	Free	10	01	Stop	12	39		3
Grade		0%			0%			0%			Stop 0%	
Peak Hour Factor	0.75	0.94	0.73	0.29	0.86	0.65	0.71	0.71	0.60	0.70	0.76	0.75
Hourly flow rate (vph)	4	139	125	24	88	20	52	24	20	56	80	0.75
Pedestrians							OZ.	47	20	30	00	4
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)					110,10							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	108			264			400	419	98	388	366	202
vC1, stage 1 conf vol							400	713	30	300	300	202
vC2, stage 2 conf vol												
vCu, unblocked vol	108			264			400	419	98	388	366	202
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	202 6.2
tC, 2 stage (s)							F. I	0.0	0.2	1.1	0,3	0.2
tF(s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	2.2
p0 queue free %	100			98			89	95	98	89	85	3.3 100
cM capacity (veh/h)	1482			1300			487	514	958	530	550	839
Direction, Lane #	NB 1	SB 1	NE 1	SW 1								
Volume Total	268	133	96	140					115-001	- 14 - 14 -	- 4/1/1	
Volume Left	4	24	52	56								
Volume Right	125	20	20	4								
cSH	1482	1300	551	547								
Volume to Capacity	0.00	0.02	0.17	0.26								
Queue Length 95th (ft)	0	1	16	25								
Control Delay (s)	0.1	1.6	12.9	13.8								
Lane LOS	Α	Α	В	В								
Approach Delay (s)	0.1	1.6	12.9	13.8								
Approach LOS			В	В								
ntersection Summary						R.Parlet		DV DV	NA REL	V Har		E 11
Average Delay			5.4							The same of the same of	- T	
ntersection Capacity Utiliza	tion		26.0%	IC	U Level of	Service			A			
Analysis Period (min)			15									

	•	4	†	-	-	_
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ħ	7		A	19	A
Volume (veh/h)	199	0	535	95	0	370
Sign Control	Stop	-	Free	•		Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.90	0.89	0.88	0.90	0.90
Hourly flow rate (vph)	216	0	601	108	0.00	411
Pedestrians		7		100		701
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)		8				
Median type		Ing Illian	TWLTL			None
Median storage veh)			2			NOUG
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1012	601			601	
vC1, stage 1 conf vol	601	001			001	
vC2, stage 2 conf vol	411					
vCu, unblocked vol	1012	601			601	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	5.4	0.2			4,1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	54	100			100	
cM capacity (veh/h)	473	500				
					976	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	216	601	108	0	411	
Volume Left	216	0	0	0	0	
Volume Right	0	0	108	0	0	
cSH	467	1700	1700	1700	1700	
Volume to Capacity	0.46	0.35	0.06	0.00	0.24	
Queue Length 95th (ft)	60	0	0	0	0	
Control Delay (s)	19.2	0.0	0.0	0.0	0.0	
Lane LOS	С					
Approach Delay (s)	19.2	0.0		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			3.1			- 1-t-
ntersection Capacity Utiliza	ition		45.8%	IC	U Level o	f Service
Analysis Period (min)			15			

	_#	-	←	*	6	1
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		स	1>	1 - 1 - 1	W	Omi
Volume (veh/h)	152	721	289	3	0	53
Sign Control		Free	Free		Stop	55
Grade		0%	0%		0%	
Peak Hour Factor	0.84	0.96	0.94	0.38	0.50	0.78
Hourly flow rate (vph)	181	751	307	8	0.00	68
Pedestrians		,,,,	001	U	U	00
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		110110	110110			
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	315				1424	311
vC1, stage 1 conf vol					TATE	011
vC2, stage 2 conf vol						
vCu, unblocked vol	315				1424	311
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					0.1	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	85				100	91
cM capacity (veh/h)	1245				128	729
Direction, Lane #	EB 1	WB 1	SW 1		120	120
Volume Total	932	315	68			
Volume Left	181	0	0			
Volume Right	0	8	68			
cSH	1245	1700	729			
Volume to Capacity	0.15	0.19	0.09			
Queue Length 95th (ft)	13	0.10	8			
Control Delay (s)	3.4	0.0	10.4			
Lane LOS	Α	0.0	В			
Approach Delay (s)	3.4	0.0	10.4			
Approach LOS	0.4	0.0	В			
••			U			
Intersection Summary		15% MIZ				
Average Delay	. Cam		2.9			
Intersection Capacity Utiliza	HUOH		75.1%	IC	U Level o	r Service
Analysis Period (min)			15			

	M	†	7	L	ļ	لر	•	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations		4			4			4	The state of the s	OWL	4	SVVI
Volume (veh/h)	1	108	37	1	62	28	74	58	10	21	18	4
Sign Control		Free			Free			Stop	10	21	Stop	4
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.25	0.79	0.71	0.25	0.78	0.64	0.74	0.73	0.50	0.58	0.64	0.25
Hourly flow rate (vph)	4	137	52	4	79	44	100	79	20	36	28	16
Pedestrians							100	, ,	20	30	20	10
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		1,073			110110							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	123			189			310	306	101	340	302	163
vC1, stage 1 conf vol							010	300	101	340	302	103
vC2, stage 2 conf vol												
vCu, unblocked vol	123			189			310	306	101	340	302	163
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	0.2	F 1 1	0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			83	87	98	93	95	98
cM capacity (veh/h)	1464			1385			606	604	954	538	607	882
Direction, Lane #	NB 1	SB 1	NE 1	SW 1	Marie II				13 -222			
Volume Total	193	127	199	80							11110	
Volume Left	4	4	100	36								
Volume Right	52	44	20	16								
cSH	1464	1385	628	610								
Volume to Capacity	0.00	0.00	0.32	0.13								
Queue Length 95th (ft)	0	0	34	11								
Control Delay (s)	0.2	0.3	13.4	11.8								
Lane LOS	Α	Α	В	В								
Approach Delay (s)	0.2	0.3	13.4	11.8								
Approach LOS			В	В								
Intersection Summary		4.00							2548		-170	
Average Delay			6.1									
Intersection Capacity Utiliza	tion		25.2%	IC	U Level of	Service			A			
Analysis Period (min)			15			- 1.187/17						

	•	*	†	-	-	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7		7	*	1	
Volume (veh/h)	96	0	295	161	0	717	
Sign Control	Stop		Free	,,,,		Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.83	0.90	0.92	0.91	0.90	0.91	
Hourly flow rate (vph)	116	0	321	177	0.00	788	
Pedestrians						100	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)		8					
Median type		8 8 6	TWLTL			None	
Median storage veh)			2			110110	
Upstream signal (ft)			13/12-1 h				
pX, platoon unblocked							
vC, conflicting volume	1109	321			321		
vC1, stage 1 conf vol	321				021		
vC2, stage 2 conf vol	788						
vCu, unblocked vol	1109	321			321		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free %	72	100			100		
cM capacity (veh/h)	413	720			1239		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	-		
Volume Total	116	321	177		SB 2 788		
Volume Left	116	0	0	0			
Volume Right	0	0	177	0	0		
cSH	403	1700	1700	1700			
Volume to Capacity	0.29	0.19	0.10		1700		
Queue Length 95th (ft)	29		0.10	0.00	0.46		
Control Delay (s)	17.5	0.0	0.0	0	0		
Lane LOS	17.5 C	0.0	0.0	0.0	0.0		
		0.0		0.0			
Approach Delay (s) Approach LOS	17.5	0.0		0.0			
	С						
ntersection Summary	10-11-24	4.000					
Average Delay			1.4				
Intersection Capacity Utiliza	iuon		49.7%	IC	U Level o	f Service	
Analysis Period (min)			15				

APPENDIX C 2021 "No-Build" Traffic Conditions

	•	*	†	~	\	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	-279 (1
Lane Configurations	T	THE STATE OF THE S	1	7	ħ	*	
Volume (vph)	213	0	574	102	0	397	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0		6.0	6.0		6.0	
Lane Util. Factor	1.00		1.00	1.00		1.00	
Frt	1.00		1.00	0.85		1.00	
Fit Protected	0.95		1.00	1.00		1.00	
Satd. Flow (prot)	1770		1863	1583		1863	
Flt Permitted	0.95		1.00	1.00		1.00	
Satd. Flow (perm)	1770		1863	1583		1863	
Peak-hour factor, PHF	0.92	0.90	0.89	0.88	0.90	0.90	-
Adj. Flow (vph)	232	0	645	116	0	441	
RTOR Reduction (vph)	0	0	0	54	0	0	
Lane Group Flow (vph)	232	0	645	62	0	441	
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases			6		5	2	
Permitted Phases	4	4		6	2	M	
Actuated Green, G (s)	11.9		27.7	27.7		27.7	
Effective Green, g (s)	11.9		27.7	27.7		27.7	
Actuated g/C Ratio	0.23		0.54	0.54		0.54	
Clearance Time (s)	6.0		6.0	6.0		6.0	
Vehicle Extension (s)	3.0		3.0	3.0		3.0	
Lane Grp Cap (vph)	408		1000	849	1 1	1000	
v/s Ratio Prot			c0.35			0.24	
v/s Ratio Perm	c0.13			0.04			
v/c Ratio	0.57		0.65	0.07		0.44	
Uniform Delay, d1	17.6		8.5	5.8		7.3	
Progression Factor	1.00		1.00	1.00		1.00	
Incremental Delay, d2	1.8		1.4	0.0		0.3	
Delay (s)	19.4		9.9	5.8		7.6	
Level of Service	В		Α	Α		Α	
Approach Delay (s)	19.4		9.3			7.6	
Approach LOS	В		Α			A	
Intersection Summary							i yez
HCM 2000 Control Delay			10.4	Н	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capa	city ratio		0.73				
Actuated Cycle Length (s)			51.6	S	um of lost	time (s)	
ntersection Capacity Utiliza	ition		52.0%		U Level o		
Analysis Period (min)			15				
c Critical Lane Group							

	_#	-	4	۲	4	4
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		सी	p		W	Omi
Volume (veh/h)	69	384	575	1	2	166
Sign Control		Free	Free	•	Stop	100
Grade		0%	0%		0%	
Peak Hour Factor	0.76	0.92	0.91	0.90	0.50	0.73
Hourly flow rate (vph)	91	417	632	1	4	227
Pedestrians					•	
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	633				1231	632
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	633				1231	632
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	90				98	53
cM capacity (veh/h)	950				177	480
Direction, Lane #	EB 1	WB 1	SW 1			
Volume Total	508	633	231			
Volume Left	91	0	4			
Volume Right	0	1	227			
cSH	950	1700	466			
Volume to Capacity	0.10	0.37	0.50			
Queue Length 95th (ft)	8	0	68			
Control Delay (s)	2.6	0.0	20.1			
Lane LOS	Α		С			
Approach Delay (s)	2.6	0.0	20.1			
Approach LOS			С			
Intersection Summary	- Table					
Average Delay			4.3			
Intersection Capacity Utilization	on		74.7%	IC	U Level o	f Service
Analysis Period (min)			15			

	4 1	†	7	L	↓	لر	<i>•</i>	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations		4	2000	- a.	4			4	IVEIX	OHE	4	OVVI
Volume (veh/h)	1	116	40	1	66	30	79	62	11	23	19	
Sign Control		Free		•	Free	00	10	Stop	11	23	Stop	4
Grade		0%			0%			0%				
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0%	0.00
Hourly flow rate (vph)	1	129	44	1	73	33	88	69	12	26	0.90	0.90
Pedestrians					10	00	00	03	12	20	21	4
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		110110			NOTIC							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	107			173			201	200	00	000	000	
vC1, stage 1 conf vol	107			HJ			261	268	90	292	262	151
vC2, stage 2 conf vol												
vCu, unblocked vol	107			173			004	000	20			
tC, single (s)	4.1			4.1			261	268	90	292	262	151
tC, 2 stage (s)	7.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tF (s)	2.2			2.2			0.5	4.0	0.0			
p0 queue free %	100			100			3.5	4.0	3.3	3.5	4.0	3.3
cM capacity (veh/h)	1484			1403			87	89	99	96	97	100
				100			671	637	968	597	642	895
Direction, Lane #	NB 1	SB 1	NE 1	SW 1								
Volume Total	174	108	169	51							W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1200
Volume Left	1	1	88	26								
Volume Right	44	33	12	4								
cSH	1484	1403	671	634								
Volume to Capacity	0.00	0.00	0.25	0.08								
Queue Length 95th (ft)	0	0	25	7								
Control Delay (s)	0.1	0.1	12.2	11.2								
Lane LOS	Α	Α	В	В								
Approach Delay (s)	0.1	0.1	12.2	11.2								
Approach LOS			В	В								
ntersection Summary												
Average Delay			5.3									
ntersection Capacity Utilizati	on		26.4%	IC	U Level of	Service			A			
Analysis Period (min)			15									

	•	*	†	~	-	Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	4	79	ሻ	†
Volume (vph)	103	0	316	173	0	769
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		6.0	6.0	1000	6.0
Lane Util. Factor	1.00		1.00	1.00		1.00
Frt	1.00		1.00	0.85		1.00
Flt Protected	0.95		1.00	1.00		1.00
Satd. Flow (prot)	1770		1863	1583		1863
Flt Permitted	0.95		1.00	1.00		
Satd. Flow (perm)	1770		1863	1583		1.00
Peak-hour factor, PHF		0.00			0.00	1863
	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	114	0	351	192	0	854
RTOR Reduction (vph)	0	0	0	66	0	0
Lane Group Flow (vph)	114	0	351	126	0	854
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA
Protected Phases			6		5	2
Permitted Phases	4	4		6	2	
Actuated Green, G (s)	7.4		37.2	37.2		37.2
Effective Green, g (s)	7.4		37.2	37.2		37.2
Actuated g/C Ratio	0.13		0.66	0.66		0.66
Clearance Time (s)	6.0		6.0	6.0		6.0
Vehicle Extension (s)	3.0		3.0	3.0		3.0
Lane Grp Cap (vph)	231		1224	1040	V 200	1224
v/s Ratio Prot			0.19	.570		c0.46
v/s Ratio Perm	c0.06		0,10	0.08		CU. 4 0
v/c Ratio	0.49		0.29	0.12		0.70
Uniform Delay, d1	22.9		4.1	3.6		6.1
Progression Factor	1.00		1.00	1.00		1.00
Incremental Delay, d2	1.7		0.1	0.1		
Delay (s)	24.5		4.2	3.7		1.8
Level of Service	24.5 C		4.Z A			7.9
Approach Delay (s)	24.5			Α		Α 7.0
			4.0			7.9
Approach LOS	С	D. 18	Α			Α
Intersection Summary						
HCM 2000 Control Delay			7.8	Н	CM 2000	Level of S
HCM 2000 Volume to Capa	city ratio		0.77			
Actuated Cycle Length (s)			56.6	S	um of lost	time (s)
Intersection Capacity Utiliza	ition		56.2%		U Level o	
Analysis Period (min)			15			2 5
c Critical Lane Group						

	_#	-	←	€	4	4
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		स	P		W	Ottit
Volume (veh/h)	163	773	310	3	0	57
Sign Control		Free	Free		Stop	01
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	181	859	344	3	0.50	63
Pedestrians			011	U	U	03
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		110110	110116			
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	348				1567	346
vC1, stage 1 conf vol	010				1307	340
vC2, stage 2 conf vol						
vCu, unblocked vol	348				1567	346
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					0,4	0,2
tF (s)	2.2				3.5	3.3
p0 queue free %	85				100	91
cM capacity (veh/h)	1211				104	697
					104	097
Direction, Lane #	EB 1	WB 1	SW 1			
Volume Total	1040	348	63			
Volume Left	181	0	0			
Volume Right	0	3	63			
cSH	1211	1700	697			
Volume to Capacity	0.15	0.20	0.09			
Queue Length 95th (ft)	13	0	7			
Control Delay (s)	3.6	0.0	10.7			
Lane LOS	Α		В			
Approach Delay (s)	3.6	0.0	10.7			
Approach LOS			В			
Intersection Summary	249220					
Average Delay			3.0	7.25 - 122 A Fe	-34	
Intersection Capacity Utilizati	ion		79.7%	ICI	U Level o	f Service
Analysis Period (min)			15			

	*	†	7	4	↓	لر	*	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	CIAIT	OME
Lane Configurations		4			4	ODIT	1 Vinte	4	IVLIN	SVVL	SWT	SWR
Volume (veh/h)	8	81	14	3	140	98	40	18	13	42	4	^
Sign Control		Free			Free	50	70	Stop	13	42	65	3
Grade		0%			0%			0%			Stop	
Peak Hour Factor	0.75	0.94	0.73	0.29		0.65	0.71	0.71	0.60	0.70	0%	0.75
Hourly flow rate (vph)	11	86	19	10	163	151	56	25	22	0.70	0.76	0.75
Pedestrians					100	101	30	20	22	60	86	4
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)					110110							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	314			105			423	386	238	440	454	
vC1, stage 1 conf vol				100			423	300	230	410	451	96
vC2, stage 2 conf vol												
vCu, unblocked vol	314			105			423	386	238	410	454	00
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	451	96
tC, 2 stage (s)							1.15	0.5	0.2	1.1	6.5	6.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	0.0
p0 queue free %	99			99			88	95	97		4.0	3.3
cM capacity (veh/h)	1247			1486			462	540	801	88 512	83 496	100 961
Direction, Lane #	NB 1	SB 1	NE 1	SW 1				0.10	001	012	430	301
Volume Total	116	324	103	150		W/U				-		
Volume Left	11	10	56	60								
Volume Right	19	151	22	4								
cSH	1247	1486	528	509								
Volume to Capacity	0.01	0.01	0.20	0.29								
Queue Length 95th (ft)	1	1	18	30								
Control Delay (s)	0.8	0.3	13.5	15.0								
Lane LOS	A	A	В	В								
Approach Delay (s)	0.8	0.3	13.5	15.0								
Approach LOS	0.0	0.0	В	В								
ntersection Summary											The state of	
Average Delay			5.5				30-					
ntersection Capacity Utilizat	tion		27.3%	ICI	U Level of Se	rvice			Α			
Analysis Period (min)			15						^			
			ALC: N									

APPENDIX D 2021 "Build" Traffic Conditions

	4	†	7	4	ļ	لر	<i>•</i>	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4		7 7 100 100	4	INEIX	OWL	4	SVVR
Volume (veh/h)	12	130	23	3	170	98	40	18	16	54	65	2
Sign Control		Free			Free	00	40	Stop	10	34		3
Grade		0%			0%			0%			Stop	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0%	0.00
Hourly flow rate (vph)	13	144	26	3	189	109	44	20	18		0.90	0.90
Pedestrians						103	77	20	10	60	72	3
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)					None							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	298			170			473	447	040	400	100	4.55
vC1, stage 1 conf vol	200			110			4/3	447	243	462	488	157
vC2, stage 2 conf vol												
vCu, unblocked vol	298			170			473	4.47	040	400	400	
tC, single (s)	4.1			4.1			7.1	447 6.5	243	462	488	157
tC, 2 stage (s)				7.1			1,1	0.0	6.2	7.1	6.5	6.2
tF (s)	2.2			2.2			3.5	4.0	2.0	0.5	1.0	
p0 queue free %	99			100			90	4.0	3.3	3.5	4.0	3.3
cM capacity (veh/h)	1263			1407			437	96 500	98 795	87 479	85	100
Direction, Lane #	NB 1	SB 1	NE 1	SW 1			401	300	195	419	474	888
Volume Total	183	301	82	136				_				
Volume Left	13	3	44	60								
Volume Right	26	109	18	3								
cSH	1263	1407	501	482								
Volume to Capacity	0.01	0.00	0.16	0.28								
Queue Length 95th (ft)	1	0.00	15	29								
Control Delay (s)	0.7	0.1	13.6	15.4								
Lane LOS	A	A	13.0 B	13.4 C								
Approach Delay (s)	0.7	0.1	13.6	15.4								
Approach LOS	0.1	0.1	В	13.4 C								
ntersection Summary		Med a				M. How	a little s		0.40	-9.7.2.		100
Average Delay			4.8								the state of	
ntersection Capacity Utiliza	ition		30.2%	IC	U Level of	Service			A			
Analysis Period (min)			15									

	•	4	†	-	1	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	E-1/11	State State
Lane Configurations	ħ	7	†	7	*	A		
Volume (vph)	263	92	604	147	61	436		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1770	1583	1863	1583	1770	1863		
Flt Permitted	0.95	1.00	1.00	1.00	0.14	1.00		
Satd. Flow (perm)	1770	1583	1863	1583	269	1863		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	292	102	671	163	68	484		
RTOR Reduction (vph)	0	80	0	93	0	0		
Lane Group Flow (vph)	292	22	671	70	68	484		
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA	A	
Protected Phases			6	HEE	5	2		
Permitted Phases	4	4		6	2	AN .		
Actuated Green, G (s)	13.9	13.9	27.3	27.3	37.7	37.7		
Effective Green, g (s)	13.9	13.9	27.3	27.3	37.7	37.7		
Actuated g/C Ratio	0.22	0.22	0.43	0.43	0.59	0.59		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	386	345	799	679	263	1104		
//s Ratio Prot		" E'S	c0.36		0.02	c0.26		
//s Ratio Perm	c0.17	0.01		0.04	0.14	50.20		
//c Ratio	0.76	0.06	0.84	0.10	0.26	0.44		
Uniform Delay, d1	23.3	19.7	16.2	10.8	9.5	7.1		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
ncremental Delay, d2	8.2	0.1	7.8	0.1	0.5	0.3		
Delay (s)	31.5	19.8	24.0	10.9	10.0	7.4		
_evel of Service	С	В	C	В	В	A		
Approach Delay (s)	28.5		21.4			7.7		
Approach LOS	С		С			A		
ntersection Summary								K I I
ICM 2000 Control Delay			18.7	Н	CM 2000	Level of Servic	2	В
HCM 2000 Volume to Capa	acity ratio		0.81		HA BA	23.0.0.00.00		
Actuated Cycle Length (s)	-		63.6	S	um of lost	time (s)		18.0
ntersection Capacity Utiliza	ation		64.7%			of Service		C
Analysis Period (min)			15					-
: Critical Lane Group								

	_#	-	—	*	4	4
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		4	7,		W	Ottit
Volume (veh/h)	69	482	713	3	2	166
Sign Control		Free	Free		Stop	100
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	77	536	792	3	2	184
Pedestrians					_	104
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	796				1483	794
vC1, stage 1 conf vol					1-100	7 0 7
vC2, stage 2 conf vol						
vCu, unblocked voi	796				1483	794
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					0.7	0,2
tF (s)	2.2				3.5	3.3
p0 queue free %	91				98	52
cM capacity (veh/h)	826				125	388
Direction, Lane #	EB 1	WB 1	SW 1		120	500
Volume Total	612	796	187			
Volume Left	77	0	2			
Volume Right	0	3	184			
cSH	826	1700	379			
Volume to Capacity	0.09	0.47	0.49			
Queue Length 95th (ft)	8	0.47	66			
Control Delay (s)	2.4	0.0	23.4			
Lane LOS	2.4 A	0.0	23.4 C			
Approach Delay (s)	2.4	0.0	23.4			
Approach LOS	2.4	0.0	23.4 C			
ntersection Summary			2.7			
Average Delay			3.7	10		
Intersection Capacity Utilizatio	п		87.3%	IC	U Level o	T Service
Analysis Period (min)			15			

	•	•	†	-	\	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ħ	7	1	71	7	4	
Volume (veh/h)	16	30	541	22	42	908	
Sign Control	Stop		Free		16	Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	18	33	601	24	47	1009	
Pedestrians			001	24	71	1009	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TIAN TI	
Median storage veh)			2			TWLTL	
Upstream signal (ft)			2			2	
pX, platoon unblocked							
vC, conflicting volume	1703	604			200		
		601			626		
vC1, stage 1 conf vol	601						
vC2, stage 2 conf vol	1102	004					
vCu, unblocked vol	1703	601			626		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free %	93	93			95		
cM capacity (veh/h)	270	500			956		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2	
Volume Total	18	33	601	24	47	1009	
Volume Left	18	0	0	0	47	0	
Volume Right	0	33	0	24	0	0	
cSH	270	500	1700	1700	956	1700	
Volume to Capacity	0.07	0.07	0.35	0.01	0.05	0.59	
Queue Length 95th (ft)	5	5	0	0	4	0	
Control Delay (s)	19.3	12.7	0.0	0.0	9.0	0.0	
Lane LOS	С	В	- 1,4,		A	0.0	
Approach Delay (s)	15.0		0.0		0.4		
Approach LOS	В		0.0		0.4		
ntersection Summary		7459					
Average Delay			0.7				
ntersection Capacity Utilization			57.8%	ICU Level of Service			В
Analysis Period (min)			15				

	•	*	†	~	-	ļ.	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y	74	^			स्	
Volume (veh/h)	54	13	212	86	21	143	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	60	14	236	96	23	159	
Pedestrians				00		100	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			110.10			HONE	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	489	283			331		
vC1, stage 1 conf vol		200			001		
vC2, stage 2 conf vol							
vCu, unblocked vol	489	283			331		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)					7. 1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	89	98			98		
cM capacity (veh/h)	528	756			1228		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1			
Volume Total	60	14	331	182			
Volume Left	60	0	0	23			
Volume Right	0	14	96	0			
cSH	528	756	1700	1228			
Volume to Capacity	0.11	0.02	0.19	0.02			
Queue Length 95th (ft)	10	1	0.19	1			
Control Delay (s)	12.7	9.9	0.0	1.2			
Lane LOS	В	Α	0.0	Α			
Approach Delay (s)	12.1	11 - 12	0.0	1.2			
Approach LOS	В		0.0	1.2			
Intersection Summary		226					
Average Delay 1.9							
ntersection Capacity Utilization 35.3% Analysis Period (min) 15		ICU Level of Service			Α		

	•	•	†	~	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1>			र्स	
Volume (veh/h)	13	3	210	15	4	151	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	14	3	233	17	4	168	
Pedestrians						100	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			THORIC			MOUG	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	418	242			250		
vC1, stage 1 conf vol	710	242			250		
vC2, stage 2 conf vol							
vCu, unblocked vol	418	242			250		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	۳.0	0.2			4.1		
F (s)	3.5	3.3			2.2		
00 queue free %	98	100					
cM capacity (veh/h)	589	797			100		
					1316		
Direction, Lane #	WB 1	NB 1	SB 1				
/olume Total	18	250	172				
Volume Left	14	0	4				
Volume Right	3	17	0				
SH	620	1700	1316				
/olume to Capacity	0.03	0.15	0.00				
Queue Length 95th (ft)	2	0	0				
Control Delay (s)	11.0	0.0	0.2				
ane LOS	В		Α				
Approach Delay (s)	11.0	0.0	0.2				
Approach LOS	В						
ntersection Summary							
Average Delay 0.5							
ntersection Capacity Utilization 22.0%		ICL	J Level o	f Service	A		
nalysis Period (min) 15			0.1070				

	•	*	†	~	-	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	The state of the s
Lane Configurations	N/		f >			લ	
Volume (veh/h)	13	3	198	15	4	142	
Sign Control	Stop	_	Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	14	3	220	17	4	158	
Pedestrians						100	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			110110			HONE	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	395	228			237		
C1, stage 1 conf vol	000	LLU			201		
vC2, stage 2 conf vol							
vCu, unblocked vol	395	228			237		
C, single (s)	6.4	6.2			4.1		
C, 2 stage (s)	0.1	0.2			7.1		
F (s)	3.5	3.3			2.2		
00 queue free %	98	100			100		
cM capacity (veh/h)	608	811			1330		
Direction, Lane #			00.4		1330		
/olume Total	WB 1	NB 1	SB 1 162	-			
/olume Left	14						
/olume Right	3	0 17	4				
SH	638	1700	1220				
/olume to Capacity	0.03		1330				
Queue Length 95th (ft)	0.03	0.14	0.00				
Control Delay (s)	10.8	0	0				
ane LOS		0.0	0.2				
Approach Delay (s)	10.0	0.0	A				
Approach LOS	10.8 B	0.0	0.2				
	We engine						
ntersection Summary	Section 1		0.0			Trace Heat	
Average Delay			0.6	10.			
ntersection Capacity Utiliza	uon		21.3%	ICI	J Level o	of Service	A
Analysis Period (min)			15				

	M	†	7	4	↓	لر	*	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations		4	- 78		4			4		OIIL	4	0111
Volume (veh/h)	1	138	44	1	96	30	80	62	13	33	19	4
Sign Control		Free			Free		00	Stop	10	00	Stop	-
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	1	153	49	1	107	33	89	69	14	37	21	4
Pedestrians							00	00	17	31	21	-
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)					710110							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	140			202			321	330	123	354	322	470
vC1, stage 1 conf vol				202			021	330	120	334	322	178
vC2, stage 2 conf vol												
vCu, unblocked vol	140			202			321	330	123	354	322	470
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	178
tC, 2 stage (s)							rat.	0.0	0.2	1.1	0.5	6.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	2.2
p0 queue free %	100			100			85	88	98	93	96	3.3
cM capacity (veh/h)	1443			1370			611	588	928	538	594	99 865
Direction, Lane #	NB 1	SB 1	NE 1	SW 1								000
Volume Total	203	141	172	62						- 70.00		-
Volume Left	1	1	89	37								
Volume Right	49	33	14	4								
cSH	1443	1370	619	572								
Volume to Capacity	0.00	0.00	0.28	0.11								
Queue Length 95th (ft)	0	0	28	9								
Control Delay (s)	0.0	0.1	13.0	12.1								
Lane LOS	Α	Α	В	В								
Approach Delay (s)	0.0	0.1	13.0	12.1								
Approach LOS			В	В								
ntersection Summary											V. J. Ser	
Average Delay			5.2						- 700%			
ntersection Capacity Utiliza	ition		27.1%	IC	U Level of	Service			Α			
Analysis Period (min)			15			-						

	•	4	†	~	1	 			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	7	7	†	74	<u> </u>	A			
Volume (vph)	152	45	337	234	64	798			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	1770	1583	1863	1583	1770	1863			
Flt Permitted	0.95	1.00	1.00	1.00	0.40	1.00			
Satd. Flow (perm)	1770	1583	1863	1583	750	1863			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	169	50	374	260	71	887			
RTOR Reduction (vph)	0	42	0	141	0	0			
Lane Group Flow (vph)	169	8	374	119	71	887			
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA	Villa III		
Protected Phases			6	Citi	5	2			
Permitted Phases	4	4		6	2	2			
Actuated Green, G (s)	8.6	8.6	25.6	25.6	35.5	35.5			
Effective Green, g (s)	8.6	8.6	25.6	25.6	35.5	35.5			
Actuated g/C Ratio	0.15	0.15	0.46	0.46	0.63	0.63			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	271	242	850	722	545	1178			
//s Ratio Prot			0.20		0.01	c0.48			
//s Ratio Perm	c0.10	0.00		0.07	0.07	00.40			
//c Ratio	0.62	0.03	0.44	0.16	0.13	0.75			
Jniform Delay, d1	22.2	20.2	10.4	9.0	4.6	7.2			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	4.4	0.1	0.4	0.1	0.1	2.8			
Delay (s)	26.7	20.3	10.7	9.1	4.7	10.0			
Level of Service	C	С	В	Α	A	A			
Approach Delay (s)	25.2		10.1			9.6			
Approach LOS	C		В			A			
Intersection Summary			- THE	N - 1 N		TENEST WAS	Nothing the last		
HCM 2000 Control Delay			11.6	H	CM 2000	Level of Service	20	D	40
HCM 2000 Volume to Capa	city ratio		0.84		C.11 2000	FOADI OI ODIAII		В	
Actuated Cycle Length (s)	·, ·		56.1	Sı	ım of lost	time (c)	A C	0.0	
ntersection Capacity Utiliza	tion	ALC: N	60.4%			of Service	18	3.0	
Analysis Period (min)			15	10	O LOVOI U	I OGI VICE		В	
Critical Lane Group									

	_#	-	←	*	6	4	
Movement	EBL	EBT	WBT	WBR	SWL	SWR	
Lane Configurations		4	7		N/	OIIII	The state of the s
Volume (veh/h)	163	866	374	3	0	59	
Sign Control		Free	Free		Stop	JJ	
Grade		0%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	181	962	416	3	0.30	66	
Pedestrians		702	110	•	0	00	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)		HOHE	NONE				
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	419				1740	447	
vC1, stage 1 conf vol	טוד				1742	417	
vC2, stage 2 conf vol							
vCu, unblocked vol	419				1740	447	
tC, single (s)	4.1				1742	417	
tC, 2 stage (s)	7.1				6.4	6.2	
tF (s)	2.2				25	0.0	
p0 queue free %	84				3.5	3.3	
cM capacity (veh/h)	1140				100	90	
					80	636	
Direction, Lane #	EB 1	WB 1	SW 1				
Volume Total	1143	419	66				
Volume Left	181	0	0				
Volume Right	0	3	66				
cSH	1140	1700	636				
Volume to Capacity	0.16	0.25	0.10				
Queue Length 95th (ft)	14	0	9				
Control Delay (s)	4.1	0.0	11.3				
Lane LOS	Α		В				
Approach Delay (s)	4.1	0.0	11.3				
Approach LOS			В				
ntersection Summary						LIGHT OF	
Average Delay		- A	3.3	gia.			
Intersection Capacity Utiliza	ation		88.1%	ICI	J Level o	f Service	E
Analysis Period (min)			15				

Build Conditions

							Build Collations
	1	•	Ť		1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	AND THE RESIDENCE OF THE PARTY
Lane Configurations	ħ	7		7	ħ	†	
Volume (veh/h)	36	30	721	22	42	657	
Sign Control	Stop		Free		76	Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	40	33	801	24	47	730	
Pedestrians			001	-	71	750	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2				
Upstream signal (ft)			_			2	
pX, platoon unblocked							
vC, conflicting volume	1624	801			000		
vC1, stage 1 conf vol	801	001			826		
vC2, stage 2 conf vol	823						
vCu, unblocked vol	1624	801			000		
tC, single (s)	6.4	6.2			826		
tC, 2 stage (s)	5.4	0.2			4.1		
tF (s)	3.5	2.0					
p0 queue free %		3.3			2.2		
	87	91			94		
cM capacity (veh/h)	310	384			805		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2	
Volume Total	40	33	801	24	47	730	
Volume Left	40	0	0	0	47	0	
Volume Right	0	33	0	24	0	0	
cSH	310	384	1700	1700	805	1700	
Volume to Capacity	0.13	0.09	0.47	0.01	0.06	0.43	
Queue Length 95th (ft)	11	7	0	0	5	0	
Control Delay (s)	18.3	15.3	0.0	0.0	9.7	0.0	
Lane LOS	С	C			A	0.0	
Approach Delay (s)	16.9		0.0		0.6		
Approach LOS	С				0.0		
Intersection Summary						e Manageria	
Average Delay			1.0				
Intersection Capacity Utiliza	ition		47.9%	ICI	U Level o	of Service	A
Analysis Period (min)			15				

73 Stop 0% 0.90 81	23 0.90	NBT 177 Free 0%	NBR 31	SBL 8	SBT	
73 Stop 0% 0.90	0.90	177 Free 0%				
Stop 0% 0.90	0.90	177 Free 0%	31	8		
0%		Free 0%			282	
0.90					Free	
					0%	
81		0.90	0.90	0.90	0.90	
	26	197	34	9	313	
					010	
		None			None	
					140110	
545	214			231		
545	214			231		
3.5	3.3			22		
84						
496	826			1337		
WB 1	WB 2	NB 1	SB 1			The second secon
81	26	231				
81	0					
0						
496						
0.16						
В						
12.7		0.0				
В			0.0			
		3-y/2-				
		2.2				
n		32.0%	ICL	J Level o	f Service	A
	545 6.4 3.5 84 496 WB 1 81 81 0 496 0.16 14 13.7 B	545 214 6.4 6.2 3.5 3.3 84 97 496 826 WB 1 WB 2 81 26 81 0 0 26 496 826 0.16 0.03 14 2 13.7 9.5 B A 12.7 B	545 214 6.4 6.2 3.5 3.3 84 97 496 826 WB 1 WB 2 NB 1 81 26 231 81 0 0 0 26 34 496 826 1700 0.16 0.03 0.14 14 2 0 13.7 9.5 0.0 B A 12.7 0.0 B	545 214 545 214 6.4 6.2 3.5 3.3 84 97 496 826 WB 1 WB 2 NB 1 SB 1 81 26 231 322 81 0 0 9 0 26 34 0 496 826 1700 1337 0.16 0.03 0.14 0.01 14 2 0 1 13.7 9.5 0.0 0.3 B A A 12.7 0.0 0.3	545 214 231 545 214 231 6.4 6.2 4.1 3.5 3.3 2.2 84 97 99 496 826 1337 WB 1 WB 2 NB 1 SB 1 81 26 231 322 81 0 0 9 0 26 34 0 496 826 1700 1337 0.16 0.03 0.14 0.01 14 2 0 1 13.7 9.5 0.0 0.3 B A A 12.7 0.0 0.3 B A A 12.7 0.0 0.3 B CU Level o	545 214 231 545 214 231 6.4 6.2 4.1 3.5 3.3 2.2 84 97 99 496 826 1337 WB 1 WB 2 NB 1 SB 1 81 26 231 322 81 0 0 9 0 26 34 0 496 826 1700 1337 0.16 0.03 0.14 0.01 14 2 0 1 13.7 9.5 0.0 0.3 B A 12.7 0.0 0.3 B 2.2 2.2 32.0% ICU Level of Service

	•	*	†	<i>></i>	-	†	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		₽			स	
Volume (veh/h)	35	9	163	37	10	255	
Sign Control	Stop		Free		10	Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	39	10	181	41	11	283	
Pedestrians						200	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)						110110	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	507	202			222		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	507	202			222		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)					100		
tF (s)	3.5	3.3			2.2		
p0 queue free %	93	99			99		
cM capacity (veh/h)	521	839			1347		
Direction, Lane #	WB 1	NB 1	SB 1		He I		ZOSTO CONTRACTOR DE LA
Volume Total	49	222	294				
Volume Left	39	0	11				
Volume Right	10	41	0				
cSH	565	1700	1347				
Volume to Capacity	0.09	0.13	0.01				
Queue Length 95th (ft)	7	0	1				
Control Delay (s)	12.0	0.0	0.4				
Lane LOS	В		Α				
Approach Delay (s)	12.0	0.0	0.4				
Approach LOS	В						
ntersection Summary							
Average Delay		×***	1.2	- te (100-1-1			
ntersection Capacity Utiliza	ation		31.5%	ICL	Level of	f Service	A
Analysis Period (min)			15				

	•	•	†	-	\	Ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1 >			स	
Volume (veh/h)	35	9	135	37	10	230	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	39	10	150	41	11	256	
Pedestrians					1.1	200	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			110110			NOTE	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	448	171			191		
vC1, stage 1 conf vol		1,513			101		
vC2, stage 2 conf vol							
Cu, unblocked vol	448	171			191		
C, single (s)	6.4	6.2			4.1		
C, 2 stage (s)		-			7.1		
F (s)	3.5	3.3			2.2		
00 queue free %	93	99			99		
oM capacity (veh/h)	564	873			1383		
Direction, Lane #	WB 1	NB 1	SB 1				
/olume Total	49	191	267				
/olume Left	39	0	11				
/olume Right	10	41	0				
SH	608	1700	1383				
/olume to Capacity	0.08	0.11	0.01				
Queue Length 95th (ft)	7	0	1				
Control Delay (s)	11.4	0.0	0.4				
ane LOS	В		A				
Approach Delay (s)	11.4	0.0	0.4				
Approach LOS	В						
ntersection Summary							
Average Delay	25 — Bi	12	1.3				
ntersection Capacity Utilizal	tion		30.2%	ICL	J Level o	f Service	A
Analysis Period (min)			15		100		

APPENDIX 2

July 31, 2014

Pastime Amusement Company 211 King Street, Suite 300 Charleston, South Carolina 29401

C/o: Mr. Steve Dudash

Via email: sdudash@davisfloyd.com

RE: Jurisdictional Wetland/Waters of the United States Delineation

70.37 Acre Tuxbury Tract TMS #263-00-04-001

Cainhoy, Berkeley County, South Carolina

Dear Mr. Dudash:

The field delineation of jurisdictional wetlands/waters of the United States located within the above referenced tract has been completed and subsequently surveyed by Thomas & Hutton, Inc. The delineated jurisdictional wetlands/waters of the United States identified include both freshwater wetlands and critical area which are of common distribution throughout the lower coastal plain of South Carolina. These areas were identified and delineated in the field in accordance with the directives of the U.S. Army Corps of Engineers 1987 Wetlands Delineation Manual and the October 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region.

The delineation of on-site critical areas was largely based on the presence of saltwater tolerant vegetation and exposure to the normal daily tidal cycle. Freshwater wetland areas were delineated based upon the presence of hydric soils, hydrophitic vegetation and near surface wetland hydrology. All three of these parameters are required to be present for wetland boundary determination.

The attached review exhibit prepared by Thomas & Hutton Engineering Company depicting the surveyed jurisdictional wetland/waters of the United States boundaries is an accurate representation of the field delineation that was performed by Red Bay Environmental and represents the extent of wetlands within the tract boundaries. The delineation of the tract resulted in 2.62 acres of on-site freshwater wetlands and 6.83 acres of critical area. We are currently in progress on seeking verification of the on-site wetlands/waters of the United States delineation from the US Army Corps of Engineers and certification of the delineated on-site critical area boundaries from the SCDHEC Office of Ocean and Coastal Resource Management.

Please contact me at (843) 810-3311 with any questions regarding this material. We will keep you posted on the continued regulatory coordination on this project with regards to the US Army Corps

of Engineers and the SCDHEC Office of Ocean and Coastal Resource Management. Thank you for the opportunity of continuing to assist you with the Natural Resources services associated with the project.

Sincerely,

Judson A. Goff

Attachments: Wetland Survey (Review) Exhibit prepared by Thomas & Hutton Engineering Co.

TOTAL FRESHWATER WETLANDS TOTAL

TOTAL AREA

WETLAND "A"
WETLAND "B"
WETLAND "C"
WETLAND "D"
BORROW AREA "E"
BORROW AREA "F"
WETLAND "H"
WETLAND "H"

WETLAND "J" WETLAND "K" TOTAL AREA

UPLAND 1 UPLAND 2 UPLAND 3

TOTAL PROJECT AREA ACREAGE BREAKDOWN

UPLAND ACREAGE

CRITICAL/TNW WETLANDS

FRESHWATER WETLAND ACREAGE

TNW AREA I TNW AREA 3 TOTAL AREA

CO #

TOTAL UPLAND SO ACREAGE	90.24 ACPES

REFERENCES

WETLANDS

682 Johnnie Dodds Blvd., Suite 100 PO Box 1522 Mt. Pleasant, SC 29465-1522 p 843.849.0200 1843.849.0203

THOMAS & HUTTON

prepared for PASTIME AMUSEMENT COMPANY

STA OON DA

NEAR CAINHOY
BERKELEY COUNTY, S.C.

1 (NCH = 200 FEET

plat 07/01/14

field crew 06/22/14 TB

APPENDIX 3

PO Box B Charleston, SC 29402 103 St. Philip Street (29403)

(843) 727-6800 www.charlestonwater.com **Board of Commissioners**

Thomas B. Pritchard, Chairman David E. Rivers, Vice Chairman William E. Koopman, Jr., Commissioner Mayor Joseph P. Riley, Jr. (Ex-Officio) Councilmember Dean C. Riegel (Ex-Officio)

Officers

Kin Hill, P.E., Chief Executive Officer Dorothy Harrison, Chief Administrative Officer Wesley Ropp, CMA, Chief Financial Officer Andy Fairey, Chief Operating Officer Mark Cline, P.E., Capital Projects Officer

8/4/2014

Mr. Stephen Dudash Davis & Floyd, Inc. P.O. Box 61599 Charleston, SC 29419

Re: Water Availability to TMS #263-00-04-001 to serve approximately 80 single family residential units, approximately 560 multi family residential units, 30,000 sf of commercial units, one restaurant

Dear Mr. Dudash,

This letter is to certify our willingness and ability to provide water to the above referenced site in Berkeley County, South Carolina. We currently have a 30" water main in the right-of-way of Hwy. 41 that your property may be served from. Please be advised that it may be necessary to loop the proposed mains into the existing system to achieve adequate pressures. This review does not supplant any other review as required by governing authorities and municipalities. It will of course be a developer responsibility to ensure there are adequate pressures and quantities on this line to serve this site with domestic water/fire flow and not negatively impact the existing developments. Please be advised any extensions or modification to the infrastructure as well as any additional fire protection will be a developer expense. All fees and costs associated with providing water service to this site will be a developer expense. This letter does not reserve capacity in the Charleston Water System infrastructure and it is incumbent upon the developer or his agent to confirm the availability herein granted past 12 months of this correspondence.

The Charleston Water System certifies the availability of service only insofar as its rights allow. Should access to our existing main/mains be denied by appropriate governing authorities, the Charleston Water System will have no other option than to deny service.

This letter is not to be construed as a letter of acceptance for operation and maintenance from the Department of Health and Environmental Control.

If there are any questions pertaining to this letter, please do not hesitate to call on me at (843) 727-6870.

Sincerely,

Cheryl L. Boyle Engineering Assistant Charleston Water System

houl Boyle

cc: file

PO Box B Charleston, SC 29402 103 St. Philip Street (29403)

(843) 727-6800 www.charlestonwater.com **Board of Commissioners**

Thomas B. Pritchard, Chairman David E. Rivers, Vice Chairman William E. Koopman, Jr., Commissioner Mayor Joseph P. Riley, Jr. (Ex-Officio) Councilmember Dean C. Riegel (Ex-Officio)

Officers

Kin Hill, P.E., Chief Executive Officer Dorothy Harrison, Chief Administrative Officer Wesley Ropp, CMA, Chief Financial Officer Andy Fairey, Chief Operating Officer Mark Cline, P.E., Capital Projects Officer

8/4/2014

Mr. Stephen Dudash Davis & Floyd, Inc. P.O. Box 61599 Charleston, SC 29419

Re: Sewer Availability to TMS #263-00-04-001 to serve approximately 80 single family residential units, approximately 560 multi family residential units, 30,000 sf of commercial units, one restaurant

Dear Mr. Dudash,

This letter is to certify our willingness and ability to provide wastewater collection service to the above referenced site in Berkeley County, South Carolina. Wastewater collection service to this site may be made available via an extension of the existing 18" gravity main going to pump station 171, located on TMS#263-16-01-067, in accordance with CWS Approach Main Policy S88001 available on our website. Any subdividing of the subject property subsequent to this correspondence will require a review process of the civil engineering plans to ensure compliance with the Charleston Water System minimum standards. Any extensions and/or modifications to the infrastructure to serve this site will be a developer expense. Please be advised that wastewater impact fees, wastewater tap fees, change-in-use fees, and/or cost to extend fees will be due prior to connection of any Charleston Water System's sewer system. This letter does not reserve capacity in the Charleston Water System infrastructure and it is incumbent upon the developer or his agent to confirm the availability herein granted past 12 months of this correspondence.

The Charleston Water System certifies the availability of service only insofar as its rights allow. Should access to our existing sewer main/mains be denied by appropriate governing authorities, the Charleston Water System will have no other option than to deny service.

This letter is not to be construed as a letter of acceptance for operation and maintenance from the Department of Health and Environmental Control.

If there are any questions pertaining to this letter, please do not hesitate to call on me at (843) 727-6870.

Sincerely.

Cheryl L. Boyle Engineering Assistant Charleston Water System

loul Koogle

cc: file

LOT PROPERTY LINE

WANDO VILLAGE PUD MIXED-USE DETACHED RESIDENTIAL LOT STANDARDS

MIN. LOT SIZE	4,000 SF
MIN. LOT WIDTH	40'
MIN. LOT DEPTH	100'
MIN. FRONT YARD	5'
MIN. REAR YARD	15'
MIN. SIDE YARD	5'

BY: Vu C Dantros

DATE: <u>04/11/20</u>18

WANDO VILLAGE

MIXED-USE DETACHED RESIDENTIAL LOT STANDARDS

CLIENT:

Z:\25306\25306.0100\Engineering\Drawing\$\Exhibit\$\25306.0100-Mixed-Used Detached Lot Standards.dwg - Apr II, 2018 - 10:52:57

ASHTON WOODS

LOCATION: CITY OF CHARLESTON, SC

DATE: 04/11/2018 JOB NUMBER: J-25306.0100 DRAWN BY: MLA REVIEWED BY: TMW

SHEET: EX.1 SCALE: 1" = 20'

682 Johnnie Dodds Blvd. • Suite 100 Mt. Pleasant, SC 29464 • 843.849.0200

www.thomasandhutton.com